In this paper, Lie bialgebra structures on generalized Virasoro-like algebras are studied. It is proved that all such Lie bialgebras are triangular coboundary.
Let R be an arbitrary commutative ring with identity. Denote by t the Lie algebra over R consisting of all upper triangular n by n matrices and let b be the Lie subalgebra of t consisting of all matrices of trace 0. T...Let R be an arbitrary commutative ring with identity. Denote by t the Lie algebra over R consisting of all upper triangular n by n matrices and let b be the Lie subalgebra of t consisting of all matrices of trace 0. The aim of this paper is to give an explicit description of the derivation algebras of the Lie algebras t and b, respectively.展开更多
It is a small step toward the Koszul-type algebras.The piecewise-Koszul algebras are, in general,a new class of quadratic algebras but not the classical Koszul ones,simultaneously they agree with both the classical Ko...It is a small step toward the Koszul-type algebras.The piecewise-Koszul algebras are, in general,a new class of quadratic algebras but not the classical Koszul ones,simultaneously they agree with both the classical Koszul and higher Koszul algebras in special cases.We give a criteria theorem for a graded algebra A to be piecewise-Koszul in terms of its Yoneda-Ext algebra E(A),and show an A_∞-structure on E(A).Relations between Koszul algebras and piecewise-Koszul algebras are discussed.In particular,our results are related to the third question of Green-Marcos.展开更多
This paper provides a fast algorithm for Grobner bases of homogenous ideals of F[x, y] over a finite field F. We show that only the S-polynomials of neighbor pairs of a strictly ordered finite homogenours generating s...This paper provides a fast algorithm for Grobner bases of homogenous ideals of F[x, y] over a finite field F. We show that only the S-polynomials of neighbor pairs of a strictly ordered finite homogenours generating set are needed in the computing of a Grobner base of the homogenous ideal. It reduces dramatically the number of unnecessary S-polynomials that are processed. We also show that the computational complexity of our new algorithm is O(N2), where N is the maximum degree of the input generating polynomials. The new algorithm can be used to solve a problem of blind recognition of convolutional codes. This problem is a new generalization of the important problem of synthesis of a linear recurring sequence.展开更多
The author introduces the Hardy spaces associated with the Herz spaces and the Beurling algebras on homogeneous groups and establishes their atomic decomposition characterizations. As the applications of this decompos...The author introduces the Hardy spaces associated with the Herz spaces and the Beurling algebras on homogeneous groups and establishes their atomic decomposition characterizations. As the applications of this decomposition, the duals of these Hardy spaces and the boundedness of the central δ-Calderon-Zygmund operators on these Hardy spaces are studied.展开更多
We introduce the notions of differential graded(DG) Poisson algebra and DG Poisson module. Let A be any DG Poisson algebra. We construct the universal enveloping algebra of A explicitly, which is denoted by A^(ue). We...We introduce the notions of differential graded(DG) Poisson algebra and DG Poisson module. Let A be any DG Poisson algebra. We construct the universal enveloping algebra of A explicitly, which is denoted by A^(ue). We show that A^(ue) has a natural DG algebra structure and it satisfies certain universal property. As a consequence of the universal property, it is proved that the category of DG Poisson modules over A is isomorphic to the category of DG modules over A^(ue). Furthermore, we prove that the notion of universal enveloping algebra A^(ue) is well-behaved under opposite algebra and tensor product of DG Poisson algebras. Practical examples of DG Poisson algebras are given throughout the paper including those arising from differential geometry and homological algebra.展开更多
Let U = Tri(fit, M, B) be a triangular ring, where A and B are unital rings, and M is a faithful (A, B)-bimodule. It is shown that an additive map φ on U is centralized at zero point (i.e., ,φ(A)B = A,φ(B)...Let U = Tri(fit, M, B) be a triangular ring, where A and B are unital rings, and M is a faithful (A, B)-bimodule. It is shown that an additive map φ on U is centralized at zero point (i.e., ,φ(A)B = A,φ(B) = 0 whenever AB = 0) if and only if it is a centralizer. Let 5 : U →U be an additive map. It is also shown that the following four conditions are equivalent: (1) 5 is specially generalized derivable at zero point, i.e., 5(AB) = δ(A)B + AS(B) - Aδ(I)B whenever AB = 0; (2) 5 is generalized derivable at zero point, i.e., there exist additive maps τ1 and τ2 on U derivable at zero point such that δ(AB) = δ(A)B + Aτ1(B) = τ2(A)B + Aδ(B) whenever AB = 0; (3) δ is a special generalized derivation; (4) δ is a generalized derivation. These results are then applied to nest algebras of Banach space展开更多
This paper is to look for bi-Frobenius algebra structures on quantum complete intersections over field k.We find a class of comultiplications,such that if√−1∈k,then a quantum complete intersection becomes a bi-Frobe...This paper is to look for bi-Frobenius algebra structures on quantum complete intersections over field k.We find a class of comultiplications,such that if√−1∈k,then a quantum complete intersection becomes a bi-Frobenius algebra with comultiplication of this form if and only if all the parameters qij=±1.Also,it is proved that if√−1∈k then a quantum exterior algebra in two variables admits a bi-Frobenius algebra structure if and only if the parameter q=±√1.While if−1/∈k,then the exterior algebra with two variables admits no bi-Frobenius algebra structures.We prove that the quantum complete intersections admit a bialgebra structure if and only if it admits a Hopf algebra structure,if and only if it is commutative,the characteristic of k is a prime p,and every ai a power of p.This also provides a large class of examples of bi-Frobenius algebras which are not bialgebras(and hence not Hopf algebras).In commutative case,other two comultiplications on complete intersection rings are given,such that they admit non-isomorphic bi-Frobenius algebra structures.展开更多
Let A be a factor von Neumann algebra and Ф be a nonlinear surjective map from A onto itself. We prove that, if Ф satisfies that Ф(A)Ф(B) - Ф(B)Ф(A)* -- AB - BA* for all A, B ∈ A, then there exist a l...Let A be a factor von Neumann algebra and Ф be a nonlinear surjective map from A onto itself. We prove that, if Ф satisfies that Ф(A)Ф(B) - Ф(B)Ф(A)* -- AB - BA* for all A, B ∈ A, then there exist a linear bijective map ψA →A satisfying ψ(A)ψ(B) - ψ(B)ψ(A)* = AB - BA* for A, B ∈ A and a real functional h on A with h(0) -= 0 such that Ф(A) = ψ(A) + h(A)I for every A ∈ A. In particular, if .4 is a type I factor, then, Ф(A) = cA + h(A)I for every A ∈ .4, where c = ±1.展开更多
Let A and B be two factor von Neumann algebras. For A, B ∈ A, define by [A, B]_*= AB-BA~*the skew Lie product of A and B. In this article, it is proved that a bijective map Φ : A → B satisfies Φ([[A, B]_*, C]_*) =...Let A and B be two factor von Neumann algebras. For A, B ∈ A, define by [A, B]_*= AB-BA~*the skew Lie product of A and B. In this article, it is proved that a bijective map Φ : A → B satisfies Φ([[A, B]_*, C]_*) = [[Φ(A), Φ(B)]_*, Φ(C)]_*for all A, B, C ∈ A if and only if Φ is a linear *-isomorphism, or a conjugate linear *-isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate linear *-isomorphism.展开更多
We establish relations between Frobenius parts and between flat-dominant dimensions of algebras linked by Frobenius bimodules.This is motivated by the Nakayama conjecture and an approach of MartinezVilla to the Auslan...We establish relations between Frobenius parts and between flat-dominant dimensions of algebras linked by Frobenius bimodules.This is motivated by the Nakayama conjecture and an approach of MartinezVilla to the Auslander-Reiten conjecture on stable equivalences.We show that the Frobenius parts of Frobenius extensions are again Frobenius extensions.Furthermore,let A and B be finite-dimensional algebras over a field k,and let domdim(_AX)stand for the dominant dimension of an A-module X.If_BM_A is a Frobenius bimodule,then domdim(A)domdim(_BM)and domdim(B)domdim(_AHom_B(M,B)).In particular,if B■A is a left-split(or right-split)Frobenius extension,then domdim(A)=domdim(B).These results are applied to calculate flat-dominant dimensions of a number of algebras:shew group algebras,stably equivalent algebras,trivial extensions and Markov extensions.We also prove that the universal(quantised)enveloping algebras of semisimple Lie algebras are QF-3 rings in the sense of Morita.展开更多
Let X be an infinite-dimensional complex Banach space and denote by B(X) the algebra of all bounded linear operators acting on X. It is shown that a surjective additive map Φ from B(X) onto itself preserves simil...Let X be an infinite-dimensional complex Banach space and denote by B(X) the algebra of all bounded linear operators acting on X. It is shown that a surjective additive map Φ from B(X) onto itself preserves similarity in both directions if and only if there exist a scalar c, a bounded invertible linear or conjugate linear operator A and a similarity invariant additive functional ψ on B(X) such that either Φ(T) = cATA^-1 + ψ(T)I for all T, or Φ(T) = cAT*A^-1 + ψ(T)I for all T. In the case where X has infinite multiplicity, in particular, when X is an infinite-dimensional Hilbert space, the above similarity invariant additive functional ψ is always zero.展开更多
Let t be a positive integer and A be a hereditary abelian category satisfying some finiteness conditions.We define the semi-derived Ringel-Hall algebra of A from the category C_(Z/t)(A)of Z/t-graded complexes and obta...Let t be a positive integer and A be a hereditary abelian category satisfying some finiteness conditions.We define the semi-derived Ringel-Hall algebra of A from the category C_(Z/t)(A)of Z/t-graded complexes and obtain a natural basis of the semi-derived Ringel-Hall algebra.Moreover,we describe the semiderived Ringel-Hall algebra by the generators and defining relations.In particular,if t is an odd integer,we show an embedding of the derived Hall algebra of the odd-periodic relative derived category in the extended semi-derived Ringel-Hall algebra.展开更多
This paper uses the geometric method to describe Lie group machine learning(LML)based on the theoretical framework of LML,which gives the geometric algorithms of Dynkin diagrams in LML.It includes the basic conception...This paper uses the geometric method to describe Lie group machine learning(LML)based on the theoretical framework of LML,which gives the geometric algorithms of Dynkin diagrams in LML.It includes the basic conceptions of Dynkin diagrams in LML,the classification theorems of Dynkin diagrams in LML,the classification algorithm of Dynkin diagrams in LML and the verification of the classification algorithm with experimental results.展开更多
Using the quiver technique we construct a class of non-graded bi-Frobenius algebras. We also classify a class of graded bi-Frobenius algebras via certain equations of structure coefficients.
In this paper, we study the structure theory of a class of not-finitely graded Lie alge- bras related to generalized Heisenberg-Virasoro algebras. In particular, the derivation algebras, the automorphism groups and th...In this paper, we study the structure theory of a class of not-finitely graded Lie alge- bras related to generalized Heisenberg-Virasoro algebras. In particular, the derivation algebras, the automorphism groups and the second cohomology groups of these Lie algebras are determined.展开更多
We survey some recent results on linear maps on operator algebras that preserve invertibility. We also consider related problems such as the problem of the characterization of linear maps preserving spectrum, various ...We survey some recent results on linear maps on operator algebras that preserve invertibility. We also consider related problems such as the problem of the characterization of linear maps preserving spectrum, various parts of spectrum, spectral radius, quasinilpotents, etc. We present some results on elementary operators and additive operators preserving invertibility or related properties. In particular, we give a negative answer to a problem posed by Gao and Hou on characterizing spectrum-preserving elementary operators. Several open problems are also mentioned.展开更多
基金Supported by an NSF Grant 10471096 of China,"One Hundred Talents Program"from University of Science and Technology of China and"Trans-Century Training Programme Foundation for the Talents"from National Education Ministry of China
文摘In this paper, Lie bialgebra structures on generalized Virasoro-like algebras are studied. It is proved that all such Lie bialgebras are triangular coboundary.
基金the National Natural Scieace Foundation of China(10071078).
文摘Let R be an arbitrary commutative ring with identity. Denote by t the Lie algebra over R consisting of all upper triangular n by n matrices and let b be the Lie subalgebra of t consisting of all matrices of trace 0. The aim of this paper is to give an explicit description of the derivation algebras of the Lie algebras t and b, respectively.
基金The work was supported by the National Natural Science Foundation of China (Grant No.10571152)
文摘It is a small step toward the Koszul-type algebras.The piecewise-Koszul algebras are, in general,a new class of quadratic algebras but not the classical Koszul ones,simultaneously they agree with both the classical Koszul and higher Koszul algebras in special cases.We give a criteria theorem for a graded algebra A to be piecewise-Koszul in terms of its Yoneda-Ext algebra E(A),and show an A_∞-structure on E(A).Relations between Koszul algebras and piecewise-Koszul algebras are discussed.In particular,our results are related to the third question of Green-Marcos.
基金the National Natural Science Foundation of China (Grant Nos. 10471091, 10671027)Foundation of Shanghai Education Committee (Grant No. 06FZ029)"One Hundred Talents Program" from University of Science and Technology of China
文摘This paper provides a fast algorithm for Grobner bases of homogenous ideals of F[x, y] over a finite field F. We show that only the S-polynomials of neighbor pairs of a strictly ordered finite homogenours generating set are needed in the computing of a Grobner base of the homogenous ideal. It reduces dramatically the number of unnecessary S-polynomials that are processed. We also show that the computational complexity of our new algorithm is O(N2), where N is the maximum degree of the input generating polynomials. The new algorithm can be used to solve a problem of blind recognition of convolutional codes. This problem is a new generalization of the important problem of synthesis of a linear recurring sequence.
基金Project (19871071) supported by National Natural Science Foundation of China
文摘The author introduces the Hardy spaces associated with the Herz spaces and the Beurling algebras on homogeneous groups and establishes their atomic decomposition characterizations. As the applications of this decomposition, the duals of these Hardy spaces and the boundedness of the central δ-Calderon-Zygmund operators on these Hardy spaces are studied.
基金supported by National Natural Science Foundation of China(Grant Nos.11571316 and 11001245)Natural Science Foundation of Zhejiang Province(Grant No.LY16A010003)
文摘We introduce the notions of differential graded(DG) Poisson algebra and DG Poisson module. Let A be any DG Poisson algebra. We construct the universal enveloping algebra of A explicitly, which is denoted by A^(ue). We show that A^(ue) has a natural DG algebra structure and it satisfies certain universal property. As a consequence of the universal property, it is proved that the category of DG Poisson modules over A is isomorphic to the category of DG modules over A^(ue). Furthermore, we prove that the notion of universal enveloping algebra A^(ue) is well-behaved under opposite algebra and tensor product of DG Poisson algebras. Practical examples of DG Poisson algebras are given throughout the paper including those arising from differential geometry and homological algebra.
基金supported by National Natural Science Foundation of China (Grant No. 11101250)supported by National Natural Science Foundation of China (Grant No. 11171249)Youth Foundation of Shanxi Province (Grant No. 2012021004)
文摘Let U = Tri(fit, M, B) be a triangular ring, where A and B are unital rings, and M is a faithful (A, B)-bimodule. It is shown that an additive map φ on U is centralized at zero point (i.e., ,φ(A)B = A,φ(B) = 0 whenever AB = 0) if and only if it is a centralizer. Let 5 : U →U be an additive map. It is also shown that the following four conditions are equivalent: (1) 5 is specially generalized derivable at zero point, i.e., 5(AB) = δ(A)B + AS(B) - Aδ(I)B whenever AB = 0; (2) 5 is generalized derivable at zero point, i.e., there exist additive maps τ1 and τ2 on U derivable at zero point such that δ(AB) = δ(A)B + Aτ1(B) = τ2(A)B + Aδ(B) whenever AB = 0; (3) δ is a special generalized derivation; (4) δ is a generalized derivation. These results are then applied to nest algebras of Banach space
基金Supported by National Natural Science Foundation of China(Grant Nos.12131015,11971304)Natural Science Foundation of Shanghai(Grant No.23ZR1435100)。
文摘This paper is to look for bi-Frobenius algebra structures on quantum complete intersections over field k.We find a class of comultiplications,such that if√−1∈k,then a quantum complete intersection becomes a bi-Frobenius algebra with comultiplication of this form if and only if all the parameters qij=±1.Also,it is proved that if√−1∈k then a quantum exterior algebra in two variables admits a bi-Frobenius algebra structure if and only if the parameter q=±√1.While if−1/∈k,then the exterior algebra with two variables admits no bi-Frobenius algebra structures.We prove that the quantum complete intersections admit a bialgebra structure if and only if it admits a Hopf algebra structure,if and only if it is commutative,the characteristic of k is a prime p,and every ai a power of p.This also provides a large class of examples of bi-Frobenius algebras which are not bialgebras(and hence not Hopf algebras).In commutative case,other two comultiplications on complete intersection rings are given,such that they admit non-isomorphic bi-Frobenius algebra structures.
基金supported by National Natural Science Foundation of China(10871111)the Specialized Research Fund for Doctoral Program of Higher Education(200800030059)(to Cui)Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology(NRF-2009-0070788)(to Park)
文摘Let A be a factor von Neumann algebra and Ф be a nonlinear surjective map from A onto itself. We prove that, if Ф satisfies that Ф(A)Ф(B) - Ф(B)Ф(A)* -- AB - BA* for all A, B ∈ A, then there exist a linear bijective map ψA →A satisfying ψ(A)ψ(B) - ψ(B)ψ(A)* = AB - BA* for A, B ∈ A and a real functional h on A with h(0) -= 0 such that Ф(A) = ψ(A) + h(A)I for every A ∈ A. In particular, if .4 is a type I factor, then, Ф(A) = cA + h(A)I for every A ∈ .4, where c = ±1.
基金supported by the National Natural Science Foundation of China(No.11526123,No.11401273)the Natural Science Foundation of Shandong Province of China(No.ZR2015PA010)
文摘Let A and B be two factor von Neumann algebras. For A, B ∈ A, define by [A, B]_*= AB-BA~*the skew Lie product of A and B. In this article, it is proved that a bijective map Φ : A → B satisfies Φ([[A, B]_*, C]_*) = [[Φ(A), Φ(B)]_*, Φ(C)]_*for all A, B, C ∈ A if and only if Φ is a linear *-isomorphism, or a conjugate linear *-isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate linear *-isomorphism.
基金supported by the Beijing Natural Science Foundation(Grant No.1192004)National Natural Science Foundation of China(Grant No.11331006)。
文摘We establish relations between Frobenius parts and between flat-dominant dimensions of algebras linked by Frobenius bimodules.This is motivated by the Nakayama conjecture and an approach of MartinezVilla to the Auslander-Reiten conjecture on stable equivalences.We show that the Frobenius parts of Frobenius extensions are again Frobenius extensions.Furthermore,let A and B be finite-dimensional algebras over a field k,and let domdim(_AX)stand for the dominant dimension of an A-module X.If_BM_A is a Frobenius bimodule,then domdim(A)domdim(_BM)and domdim(B)domdim(_AHom_B(M,B)).In particular,if B■A is a left-split(or right-split)Frobenius extension,then domdim(A)=domdim(B).These results are applied to calculate flat-dominant dimensions of a number of algebras:shew group algebras,stably equivalent algebras,trivial extensions and Markov extensions.We also prove that the universal(quantised)enveloping algebras of semisimple Lie algebras are QF-3 rings in the sense of Morita.
文摘Let X be an infinite-dimensional complex Banach space and denote by B(X) the algebra of all bounded linear operators acting on X. It is shown that a surjective additive map Φ from B(X) onto itself preserves similarity in both directions if and only if there exist a scalar c, a bounded invertible linear or conjugate linear operator A and a similarity invariant additive functional ψ on B(X) such that either Φ(T) = cATA^-1 + ψ(T)I for all T, or Φ(T) = cAT*A^-1 + ψ(T)I for all T. In the case where X has infinite multiplicity, in particular, when X is an infinite-dimensional Hilbert space, the above similarity invariant additive functional ψ is always zero.
基金supported by National Natural Science Foundation of China(Grant Nos.12001107 and 11821001)University Natural Science Project of Anhui Province(Grant No.KJ2021A0661)+1 种基金University Outstanding Youth Research Project in Anhui Province(Grant No.2022AH020082)Scientific Research and Innovation Team Project of Fuyang Normal University(Grant No.TDJC2021009)。
文摘Let t be a positive integer and A be a hereditary abelian category satisfying some finiteness conditions.We define the semi-derived Ringel-Hall algebra of A from the category C_(Z/t)(A)of Z/t-graded complexes and obtain a natural basis of the semi-derived Ringel-Hall algebra.Moreover,we describe the semiderived Ringel-Hall algebra by the generators and defining relations.In particular,if t is an odd integer,we show an embedding of the derived Hall algebra of the odd-periodic relative derived category in the extended semi-derived Ringel-Hall algebra.
基金Na tureScienceFoundationof JiangsuProvinceunder Grant No .BK2005027 and the211 FoundationofSoochow University
文摘This paper uses the geometric method to describe Lie group machine learning(LML)based on the theoretical framework of LML,which gives the geometric algorithms of Dynkin diagrams in LML.It includes the basic conceptions of Dynkin diagrams in LML,the classification theorems of Dynkin diagrams in LML,the classification algorithm of Dynkin diagrams in LML and the verification of the classification algorithm with experimental results.
基金This work was supported in part by the National Natural Science Foundation of China(Grant Nos.10501041,10271113,10601052)
文摘Using the quiver technique we construct a class of non-graded bi-Frobenius algebras. We also classify a class of graded bi-Frobenius algebras via certain equations of structure coefficients.
基金Supported by National Natural Science Foundation of China(Grant Nos.11431010,11371278 and 11271284)Shanghai Municipal Science and Technology Commission(Grant No.12XD1405000)
文摘In this paper, we study the structure theory of a class of not-finitely graded Lie alge- bras related to generalized Heisenberg-Virasoro algebras. In particular, the derivation algebras, the automorphism groups and the second cohomology groups of these Lie algebras are determined.
文摘We survey some recent results on linear maps on operator algebras that preserve invertibility. We also consider related problems such as the problem of the characterization of linear maps preserving spectrum, various parts of spectrum, spectral radius, quasinilpotents, etc. We present some results on elementary operators and additive operators preserving invertibility or related properties. In particular, we give a negative answer to a problem posed by Gao and Hou on characterizing spectrum-preserving elementary operators. Several open problems are also mentioned.