The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theore...The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theorems on the existence of solutions are obtained, which perfect the solution theory of linear complex differential equations.展开更多
This paper analyzes the force vs depth loading curves of conical, pyramidal, wedged and for spherical indentations on a strict mathematical basis by explicit use of the indenter geometries rather than on still world-w...This paper analyzes the force vs depth loading curves of conical, pyramidal, wedged and for spherical indentations on a strict mathematical basis by explicit use of the indenter geometries rather than on still world-wide used iterated “contact depths” with elastic theory and violation of the energy law. The now correctly analyzed loading curves provide as yet undetectable phase-transition. For the spherical indentations, this includes an obvious correction for the varying depth/radius ratio, which had previously been disregarded. Only algebraic formulas are now used for the calculation of material’s properties without data-fittings, or simplifications, or false simulations. Penetration resistance differences of materials’ polymorphs provide precise intersection values as kink unsteadiness by equalization of linear regression lines from mathematically linearized loading curves. These intersections indicate phase transition onset values for depth and force. The precise and correct determination of phase-transition onsets allows for energy and phase-transition energy calculations. The unprecedented algebraic equations are most simply and mathematically reproducibly deduced. There are no restrictions for elastic and/or plastic behavior and no use of different formulas for different force ranges. The novel indentation formulas reveal unprecedented access to the onset, energy and transition energy of phase-transitions. This is now also achieved for spherical indentations. Their formula as deduced for plotting is reformulated for integrations. The distinction of applied work (Wapplied) and indentation work (Windent) allows now for comparing spherical with pyramidal indentation phase-transitions. Only low energy phase-transitions from pyramidal indentation may be missed in spherical indentations. The rather low penetration depths of sphere calottes calculate very close for cap and flat area values. This allows for the calculation of the indentation phase-transition onset pressure and thus the successful compariso展开更多
Using value distribution theory and techniques,the problem of the algebroid solutions of second order algebraic differential equation is investigated.Examples show that the results are sharp.
In this paper we proposed an AMH Supply Chain model to obtain optimal solutions for Two-, Three- and Four-Stage for deterministic models. Besides deriving its algebraic solutions, a simple searching method is successf...In this paper we proposed an AMH Supply Chain model to obtain optimal solutions for Two-, Three- and Four-Stage for deterministic models. Besides deriving its algebraic solutions, a simple searching method is successfully applied in obtaining optimal total costs and its integer multipliers. Our model has shown promising results in comparison to Equal Cycle Time and other existing ones. The tests focused on obtaining optimal total annual costs and other related details of Two-, Three- and Four-Stage for deterministic models. The results are run under Visual Basic Programming platform using Intel? CoreTM2 Duo T6500 Processor.展开更多
We study the number and distribution of critical points as we Ⅱ as algebraic solutions of a cubic system close related to the general quadratic system.
基金Supported by Guangdong Natural Science Foundation(2015A030313628,S2012010010376)Training plan for Distinguished Young Teachers in Higher Education of Guangdong(Yqgdufe1405)+1 种基金Guangdong Education Science Planning Project(2014GXJK091,GDJG20142304)the National Natural Science Foundation of China(11301140,11101096)
文摘The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theorems on the existence of solutions are obtained, which perfect the solution theory of linear complex differential equations.
文摘This paper analyzes the force vs depth loading curves of conical, pyramidal, wedged and for spherical indentations on a strict mathematical basis by explicit use of the indenter geometries rather than on still world-wide used iterated “contact depths” with elastic theory and violation of the energy law. The now correctly analyzed loading curves provide as yet undetectable phase-transition. For the spherical indentations, this includes an obvious correction for the varying depth/radius ratio, which had previously been disregarded. Only algebraic formulas are now used for the calculation of material’s properties without data-fittings, or simplifications, or false simulations. Penetration resistance differences of materials’ polymorphs provide precise intersection values as kink unsteadiness by equalization of linear regression lines from mathematically linearized loading curves. These intersections indicate phase transition onset values for depth and force. The precise and correct determination of phase-transition onsets allows for energy and phase-transition energy calculations. The unprecedented algebraic equations are most simply and mathematically reproducibly deduced. There are no restrictions for elastic and/or plastic behavior and no use of different formulas for different force ranges. The novel indentation formulas reveal unprecedented access to the onset, energy and transition energy of phase-transitions. This is now also achieved for spherical indentations. Their formula as deduced for plotting is reformulated for integrations. The distinction of applied work (Wapplied) and indentation work (Windent) allows now for comparing spherical with pyramidal indentation phase-transitions. Only low energy phase-transitions from pyramidal indentation may be missed in spherical indentations. The rather low penetration depths of sphere calottes calculate very close for cap and flat area values. This allows for the calculation of the indentation phase-transition onset pressure and thus the successful compariso
文摘Using value distribution theory and techniques,the problem of the algebroid solutions of second order algebraic differential equation is investigated.Examples show that the results are sharp.
文摘In this paper we proposed an AMH Supply Chain model to obtain optimal solutions for Two-, Three- and Four-Stage for deterministic models. Besides deriving its algebraic solutions, a simple searching method is successfully applied in obtaining optimal total costs and its integer multipliers. Our model has shown promising results in comparison to Equal Cycle Time and other existing ones. The tests focused on obtaining optimal total annual costs and other related details of Two-, Three- and Four-Stage for deterministic models. The results are run under Visual Basic Programming platform using Intel? CoreTM2 Duo T6500 Processor.
文摘We study the number and distribution of critical points as we Ⅱ as algebraic solutions of a cubic system close related to the general quadratic system.