We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory a...We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory and p-adic analysis. Furthermore, we develop a computation method to find all integral points on a class of elliptic curve y^2= (x+α)(x^2-α)(x^2-αx+b) ,α ,b∈Z,α^2〈4b and find all integer solutions of hyperelliptic Diophantine equation Dy^2=Ax^4 + Bx^2 +C,B^2〈4AC.展开更多
基金Supported by the National Natural Science Foun-dation of China (2001AA141010)
文摘We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory and p-adic analysis. Furthermore, we develop a computation method to find all integral points on a class of elliptic curve y^2= (x+α)(x^2-α)(x^2-αx+b) ,α ,b∈Z,α^2〈4b and find all integer solutions of hyperelliptic Diophantine equation Dy^2=Ax^4 + Bx^2 +C,B^2〈4AC.