In this paper image with horizontal motion blur, vertical motion blur and angled motion blur are considered. We construct several difference schemes to the highly nonlinear term △↓.(△↓u/√|△↓|^2+β) of the ...In this paper image with horizontal motion blur, vertical motion blur and angled motion blur are considered. We construct several difference schemes to the highly nonlinear term △↓.(△↓u/√|△↓|^2+β) of the total variation-based image motion deblurring problem. The large nonlinear system is linearized by fixed point iteration method. An algebraic multigrid method with Krylov subspace acceleration is used to solve the corresponding linear equations as in [7]. The algorithms can restore the image very well. We give some numerical experiments to demonstrate that our difference schemes are efficient and robust.展开更多
Image restoration is a fundamental problem in image processing. Blind image restoration has a great value in its practical application. However, it is not an easy problem to solve due to its complexity and difficulty....Image restoration is a fundamental problem in image processing. Blind image restoration has a great value in its practical application. However, it is not an easy problem to solve due to its complexity and difficulty. In this paper, we combine our robust algorithm for known blur operator with an alternating minimization implicit iterative scheme to deal with blind deconvolution problem, recover the image and identify the point spread function(PSF). The only assumption needed is satisfy the practical physical sense. Numerical experiments demonstrate that this minimization algorithm is efficient and robust over a wide range of PSF and have almost the same results compared with known PSF algorithm.展开更多
文摘In this paper image with horizontal motion blur, vertical motion blur and angled motion blur are considered. We construct several difference schemes to the highly nonlinear term △↓.(△↓u/√|△↓|^2+β) of the total variation-based image motion deblurring problem. The large nonlinear system is linearized by fixed point iteration method. An algebraic multigrid method with Krylov subspace acceleration is used to solve the corresponding linear equations as in [7]. The algorithms can restore the image very well. We give some numerical experiments to demonstrate that our difference schemes are efficient and robust.
文摘Image restoration is a fundamental problem in image processing. Blind image restoration has a great value in its practical application. However, it is not an easy problem to solve due to its complexity and difficulty. In this paper, we combine our robust algorithm for known blur operator with an alternating minimization implicit iterative scheme to deal with blind deconvolution problem, recover the image and identify the point spread function(PSF). The only assumption needed is satisfy the practical physical sense. Numerical experiments demonstrate that this minimization algorithm is efficient and robust over a wide range of PSF and have almost the same results compared with known PSF algorithm.