期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
一类双参数Hamilton系统拓扑相图的分枝图和相应的全局相图
1
作者 陈永雪 李学鹏 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期15-19,共5页
分析了一类双参数Hamilton系统的奇点性态,研究了系统中奇闭轨的存在条件,考虑了鞍点间的轨线连结,绘出了系统拓扑相图的分枝图和相应的全局相图.
关键词 哈密顿系统 代数不变曲线 奇点 分支曲线
下载PDF
具有四点异宿环和同宿环共存的平面五次多项式系统
2
作者 陈永雪 叶星旸 李学鹏 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期29-33,36,共6页
给出一平面五次多项式微分系统存在五次代数不变曲线的条件.经分析,获得系统在一定条件下同时存在一个四点异宿环和一个同宿环(它们内部均只含一个焦点).进一步根据旋转向量场理论研究了它们各自分支出极限环的条件.
关键词 平面微分系统 代数不变曲线 并宿环 同宿环 极限环
下载PDF
Invariant algebraic curves and rational first integrals of holomorphic foliations in CP(2) 被引量:1
3
作者 张祥 《Science China Mathematics》 SCIE 2003年第2期271-279,共9页
In this paper, using the tools of algebraic geometry we provide sufficient conditions for a holomor-phic foliation in CP(2) to have a rational first integral. Moreover, we obtain an upper bound of the degreesof invari... In this paper, using the tools of algebraic geometry we provide sufficient conditions for a holomor-phic foliation in CP(2) to have a rational first integral. Moreover, we obtain an upper bound of the degreesof invariant algebraic curves of a holomorphic foliation in CP(2). Then we use these results to prove that anyholomorphic foliation of degree 2 does not have cubic limit cycles. 展开更多
关键词 HOLOMORPHIC foliation invariant algebraic curve RATIONAL first integral CUBIC limit cycle.
原文传递
一个平面二次Hamilton系统的四参数开折 被引量:1
4
作者 郑艳红 李学鹏 《福建师范大学学报(自然科学版)》 CAS CSCD 2002年第1期12-17,共6页
通过对一个二次 Hamilton系统的四参数的开折 ,得到一个保证系统存在极限环的四维参数区域 ,区域的部分边界为庞加莱分枝、同宿环分枝、异宿环分枝。
关键词 二次系统 同宿环 极限环 异宿环 代数不变曲线 平面二次Hamilton系统 四参数开折
下载PDF
二次系统的五次代数曲线同宿环 被引量:1
5
作者 郑艳红 李学鹏 《福建师范大学学报(自然科学版)》 CAS CSCD 2004年第3期6-11,共6页
给出一类与已有结果不同的二次系统的五次不变代数曲线,其非孤立闭分支在一定条件下构成系统的同宿环.
关键词 二次系统 代数不变曲线 同宿环
下载PDF
INTEGRABILITY VIA INVARIANT ALGEBRAIC CURVES FOR PLANAR POLYNOMIALDIFFERENTIAL SYSTEMS 被引量:4
6
作者 Colin Christopher (School of Mathematics and Statistics, University of Plymouth, Plymouth, Devon PL4 SAA, UNITED KINGDOM) Jaume Llibre (Dopartament de Matematiques, Universitat Autonoma de Barcelona, 08193-Bellaterra, Barcelona, SPAIN) 《Annals of Differential Equations》 2000年第1期5-19,共15页
We present an introduction to the Darboux integrability theory of planar complex and real polynomial differential systems containing some improvements to the classical theory.
关键词 INTEGRABILITY invariant algebraic curves planar polynomial differential systems
原文传递
LIMIT CYCLES AND INVARIANT PARABOLA IN A KUKLES SYSTEM OF DEGREE THREE 被引量:2
7
作者 刘振海 E.Sáez I.Szántó 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期865-869,共5页
In this article,the authors consider a class of Kukles planar polynomial differential system of degree three having an invariant parabola.For this class of second-order differential systems,it is shown that for certai... In this article,the authors consider a class of Kukles planar polynomial differential system of degree three having an invariant parabola.For this class of second-order differential systems,it is shown that for certain values of the parameters the invariant parabola coexists with a center.For other values it can coexist with one,two or three small amplitude limit cycles which are constructed by Hopf bifurcation.This result gives an answer for the question given in[4],about the existence of limit cycles for such class of system. 展开更多
关键词 Kukles system limit cycles invariant algebraic curves
下载PDF
THE PROBLEM OF THE CENTRE FOR CUBIC DIFFERENTIAL SYSTEMS WITH TWO HOMOGENEOUS INVARIANT STRAIGHT LINES AND ONE INVARIANT CONIC
8
作者 Dumitru Cozma 《Annals of Differential Equations》 2010年第4期385-399,共15页
For cubic differential systems with two homogeneous invariant straight lines and one invariant conic, it is proved that a singular point with pure imaginary eigenvalues (a weak focus) is a centre if and only if the fi... For cubic differential systems with two homogeneous invariant straight lines and one invariant conic, it is proved that a singular point with pure imaginary eigenvalues (a weak focus) is a centre if and only if the first two Lyapunov quantities Lj , j = 1, 2 vanish. 展开更多
关键词 cubic differential systems center-focus problem invariant algebraic curves INTEGRABILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部