Background Proliferation, cell migration and phenotypic modulation of airway smooth muscle cells (ASMCs) are important features of airway remodelling in asthma. The precise cellular and molecular mechanisms that reg...Background Proliferation, cell migration and phenotypic modulation of airway smooth muscle cells (ASMCs) are important features of airway remodelling in asthma. The precise cellular and molecular mechanisms that regulate ASMCs proliferation, migration and phenotypic modulation in the lung remain unknown. Basic fibroblast growth factor (bFGF), a highly specific chemotactic and mitogenic factor for many cell types, appears to be involved in the development of airway remodelling. Our study assessed whether bFGF directly stimulates the proliferation, migration and phenotypic modulation of ASMCs. Methods Confluent and growth arrested human ASMCs were treated with human recombinant FGF. Proliferation was measured by BrdU incorporation and cell counting. Migration was examined using Boyden chamber apparatus. Expressions of smooth muscle (sm)-α-actin and sm-myosin heavy chain (MHC) isoform 1 were determined by RT-PCR and Westem blot analysis. Results It was found that hrbFGF (10 ng/ml), when added to ASMCs, induced a significant increase in BrdU uptake and cell number by ASMCs as compared to controls and a significant increase in ASMCs migration with respect to controls. The mRNA and protein expressions of sm-α-actin and sm-MHC in ASMCs that were stimulated with hrbFGF decreased with respect to controls. Conclusion It appears that bFGF can directly stimulate proliferation and migration of ASMCs, however, the expressions of cells' contractive phenotype decreased.展开更多
Objective: To investigate the relationship between the proliferation of sensitized human airway smooth muscle cells (HASMCs) and the expression of extracellular signal regulated kinase (ERK) and the effect of She...Objective: To investigate the relationship between the proliferation of sensitized human airway smooth muscle cells (HASMCs) and the expression of extracellular signal regulated kinase (ERK) and the effect of Shenmai Injection (参麦注射液, SMI) on HASMCs. Methods: The HASMCs cultured in vitro were divided into three groups: (1) control group; (2) sensitized group: containing 10% asthmatic serum; (3) SMI group: further divided into three different concentration subgroups interferred with 10 μL/mL, 50 μL/mL, and 100 μL/mL SMI, respectively. The proliferation of HASMCs was detected using MTT method, the expression of proliferating cell nucleus antigen (PCNA) in HASMCs was detected using immunocytochemical staining, and the expression of phosphoration-ERK1/2 (p-ERK1/2) protein was detected using Western-blot. Results: After passive sensitization, the optical density value (A49o value) of HASMCs was significantly increased from 0.366± 0.086 to 0.839 ± 0.168 (P〈0.05). In addition, the expression of PCNA was significantly increased from 28.7% ± 5.9% in the control group to 69.8% ±7.5% in the sensitized group (P〈0.05). At the same time, the expression of p-ERK1/2 in passively sensitized HASMCs was significantly increased compared with the control group (all P〈0.05). Affer application of 10 μL/mL, 50 μL/mL, and 100 μL/mL SMI to the cultured media of passively sensitized group, the A570 value was significantly decreased from 0.839 ±0.168 to 0.612 ±0.100, 0.412 ± 0.092, and 0.339 ± 0.077, respectively (P〈0.05). Moreover, the expression of PCNA was significantly decreased from 69.8% ±7.5% to 57.8% ± 6.2%, 40.7%±5.4%, and 26.1% ± 5.2%, respectively. At the same time, the expression of p-ERK1/2 in each SMI group was significantly decreased compared with the sensitized group (all ,P〈0.05). Conclusion: ERK signal transduction pathway may be involved in the airway remodeling in asthma. The expression of ERK can be inhibited by S展开更多
文摘Background Proliferation, cell migration and phenotypic modulation of airway smooth muscle cells (ASMCs) are important features of airway remodelling in asthma. The precise cellular and molecular mechanisms that regulate ASMCs proliferation, migration and phenotypic modulation in the lung remain unknown. Basic fibroblast growth factor (bFGF), a highly specific chemotactic and mitogenic factor for many cell types, appears to be involved in the development of airway remodelling. Our study assessed whether bFGF directly stimulates the proliferation, migration and phenotypic modulation of ASMCs. Methods Confluent and growth arrested human ASMCs were treated with human recombinant FGF. Proliferation was measured by BrdU incorporation and cell counting. Migration was examined using Boyden chamber apparatus. Expressions of smooth muscle (sm)-α-actin and sm-myosin heavy chain (MHC) isoform 1 were determined by RT-PCR and Westem blot analysis. Results It was found that hrbFGF (10 ng/ml), when added to ASMCs, induced a significant increase in BrdU uptake and cell number by ASMCs as compared to controls and a significant increase in ASMCs migration with respect to controls. The mRNA and protein expressions of sm-α-actin and sm-MHC in ASMCs that were stimulated with hrbFGF decreased with respect to controls. Conclusion It appears that bFGF can directly stimulate proliferation and migration of ASMCs, however, the expressions of cells' contractive phenotype decreased.
基金Supported by the Key Project in Science and Technology of Henan Province(No.072300450100)Project of High and New Technology Development of Health Department in Henan Province(No.20060140)
文摘Objective: To investigate the relationship between the proliferation of sensitized human airway smooth muscle cells (HASMCs) and the expression of extracellular signal regulated kinase (ERK) and the effect of Shenmai Injection (参麦注射液, SMI) on HASMCs. Methods: The HASMCs cultured in vitro were divided into three groups: (1) control group; (2) sensitized group: containing 10% asthmatic serum; (3) SMI group: further divided into three different concentration subgroups interferred with 10 μL/mL, 50 μL/mL, and 100 μL/mL SMI, respectively. The proliferation of HASMCs was detected using MTT method, the expression of proliferating cell nucleus antigen (PCNA) in HASMCs was detected using immunocytochemical staining, and the expression of phosphoration-ERK1/2 (p-ERK1/2) protein was detected using Western-blot. Results: After passive sensitization, the optical density value (A49o value) of HASMCs was significantly increased from 0.366± 0.086 to 0.839 ± 0.168 (P〈0.05). In addition, the expression of PCNA was significantly increased from 28.7% ± 5.9% in the control group to 69.8% ±7.5% in the sensitized group (P〈0.05). At the same time, the expression of p-ERK1/2 in passively sensitized HASMCs was significantly increased compared with the control group (all P〈0.05). Affer application of 10 μL/mL, 50 μL/mL, and 100 μL/mL SMI to the cultured media of passively sensitized group, the A570 value was significantly decreased from 0.839 ±0.168 to 0.612 ±0.100, 0.412 ± 0.092, and 0.339 ± 0.077, respectively (P〈0.05). Moreover, the expression of PCNA was significantly decreased from 69.8% ±7.5% to 57.8% ± 6.2%, 40.7%±5.4%, and 26.1% ± 5.2%, respectively. At the same time, the expression of p-ERK1/2 in each SMI group was significantly decreased compared with the sensitized group (all ,P〈0.05). Conclusion: ERK signal transduction pathway may be involved in the airway remodeling in asthma. The expression of ERK can be inhibited by S