The thermal stability and failure mechanism of thick thermal barrier coatings(TBCs) with and without vertical type cracks were investigated through the cyclic thermal exposure and thermal-shock tests. The TBC systems ...The thermal stability and failure mechanism of thick thermal barrier coatings(TBCs) with and without vertical type cracks were investigated through the cyclic thermal exposure and thermal-shock tests. The TBC systems with thickness of about 2000 μm in the top coat were prepared by an air plasma spray(APS) on the bond coat of about 150 μm in thickness prepared by APS. The adhesive strength values of the as-prepared TBCs with and without vertical type cracks were determined to be 24.7 and 11.0 MPa, respectively, indicating the better interface stability in the TBC with vertical type cracks. The TBC with vertical type cracks shows a better thermal durability than that without vertical type cracks in the thermal cyclic exposure and thermal-shock tests. The hardness values of the as-prepared TBCs with and without vertical type cracks were found to be 6.6 and 5.3 GPa, respectively, which were increased to 9.5 and 5.5 GPa, respectively, after the cyclic thermal exposure tests. These results indicate that the vertical type cracks developed in the top coat are important in improving the lifetime performance of thick TBC in high temperature environment.展开更多
With a rising energy demand and anabatic environmental crisis arising from the fast growth in human population and society economics,numerous efforts have been devoted to explore and design plentiful multifunctional m...With a rising energy demand and anabatic environmental crisis arising from the fast growth in human population and society economics,numerous efforts have been devoted to explore and design plentiful multifunctional materials for meeting highefficiency energy transfer processes,which happen in various developed energy conversion and storage systems.As a special kind of multi-metal oxides,perovskite with attractive physical and chemical properties,is becoming a rapidly rising star on the horizon of high-performance catalytic materials with substantial research behaviors worldwide.The porous nanostructure in targeted catalysts is favorable to the catalytic activity and thus improves the overall efficiency of these energy-related installations.In this review paper,recent advances made in the porous perovskite nanostructures for catalyzing several anodic or cathodic reactions in fuel cells and metal-air batteries are comprehensively summarized.Plenty of general preparation methods employed to attain porous perovskite-type oxides are provided,followed by a further discussion about the influence of various strategies on structures and catalytic properties of the porous perovskites.Furthermore,deep insights gathered in the future development of porous perovskite-based materials for energy conversion and storage technologies are also provided.展开更多
基金Project(2011-0030058) supported by the National Research Foundation of Korea(NRF) Funded by the Korean Government(MSIP)Project(20134030200220) supported by the Human Resources Development Program of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Funded by the Korea Government Ministry of Trade,Industry and Energy and by the Korea Institute of Materials Science(KIMS) in 2013
文摘The thermal stability and failure mechanism of thick thermal barrier coatings(TBCs) with and without vertical type cracks were investigated through the cyclic thermal exposure and thermal-shock tests. The TBC systems with thickness of about 2000 μm in the top coat were prepared by an air plasma spray(APS) on the bond coat of about 150 μm in thickness prepared by APS. The adhesive strength values of the as-prepared TBCs with and without vertical type cracks were determined to be 24.7 and 11.0 MPa, respectively, indicating the better interface stability in the TBC with vertical type cracks. The TBC with vertical type cracks shows a better thermal durability than that without vertical type cracks in the thermal cyclic exposure and thermal-shock tests. The hardness values of the as-prepared TBCs with and without vertical type cracks were found to be 6.6 and 5.3 GPa, respectively, which were increased to 9.5 and 5.5 GPa, respectively, after the cyclic thermal exposure tests. These results indicate that the vertical type cracks developed in the top coat are important in improving the lifetime performance of thick TBC in high temperature environment.
基金the funding support(Project Number.PolyU 152214/17E)from Research Grant Council,University Grants Committee,Hong Kong SARthe financial support from National Nature Science Foundation of China under contract No.21878158the National Key Research and Development Program of China under contract No.2018YFB0905402
文摘With a rising energy demand and anabatic environmental crisis arising from the fast growth in human population and society economics,numerous efforts have been devoted to explore and design plentiful multifunctional materials for meeting highefficiency energy transfer processes,which happen in various developed energy conversion and storage systems.As a special kind of multi-metal oxides,perovskite with attractive physical and chemical properties,is becoming a rapidly rising star on the horizon of high-performance catalytic materials with substantial research behaviors worldwide.The porous nanostructure in targeted catalysts is favorable to the catalytic activity and thus improves the overall efficiency of these energy-related installations.In this review paper,recent advances made in the porous perovskite nanostructures for catalyzing several anodic or cathodic reactions in fuel cells and metal-air batteries are comprehensively summarized.Plenty of general preparation methods employed to attain porous perovskite-type oxides are provided,followed by a further discussion about the influence of various strategies on structures and catalytic properties of the porous perovskites.Furthermore,deep insights gathered in the future development of porous perovskite-based materials for energy conversion and storage technologies are also provided.