High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for re...High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for regional air quality control and management. In this study, PM_(2.5) data from 2000 to 2015 was determined from an inversion of NASA atmospheric remote sensing images. Using geo-statistics, geographic detectors, and geo-spatial analysis methods, the spatio-temporal evolution patterns and driving factors of PM_(2.5) concentration in China were evaluated. The main results are as follows.(1) In general, the average concentration of PM_(2.5) in China increased quickly and reached its peak value in 2006; subsequently, concentrations remained between 21.84 and 35.08 μg/m3.(2) PM_(2.5) is strikingly heterogeneous in China, with higher concentrations in the north and east than in the south and west. In particular, areas with relatively high PM_(2.5) concentrations are primarily in four regions, the Huang-Huai-Hai Plain, Lower Yangtze River Delta Plain, Sichuan Basin, and Taklimakan Desert. Among them, Beijing-Tianjin-Hebei Region has the highest concentration of PM_(2.5).(3) The center of gravity of PM_(2.5) has generally moved northeastward, which indicates an increasingly serious haze in eastern China. High-value PM_(2.5) concentrations have moved eastward, while low-value PM_(2.5) has moved westward.(4) Spatial autocorrelation analysis indicates a significantly positive spatial correlation. The "High-High" PM_(2.5) agglomeration areas are distributed in the Huang-Huai-Hai Plain, Fenhe-Weihe River Basin, Sichuan Basin, and Jianghan Plain regions. The "Low-Low" PM_(2.5) agglomeration areas include Inner Mongolia and Heilongjiang, north of the Great Wall, Qinghai-Tibet Plateau, and Taiwan, Hainan, and Fujian and other southeast coastal cities and islands.(5) Geographic detection analysis indicates that both natural and anthropogenic factors account for spatial variations in PM_(2.5) concentration. Geographica展开更多
为探究杭州市冬春季节大气污染特征与雾霾成因,本文分析了2015年12月—2016年3月市区10个空气质量监测站的PM_(2.5)、SO_2等6种污染物的浓度变化规律,对比了雾霾期和非雾霾期各污染物间的相关性,利用HYSPLIT(Hybrid Single Particle Lag...为探究杭州市冬春季节大气污染特征与雾霾成因,本文分析了2015年12月—2016年3月市区10个空气质量监测站的PM_(2.5)、SO_2等6种污染物的浓度变化规律,对比了雾霾期和非雾霾期各污染物间的相关性,利用HYSPLIT(Hybrid Single Particle Lagrangian Integrated Trajectory)模型探讨了期间5次典型雾霾期污染物的潜在来源.结果表明,研究期内各污染物浓度呈现冬高春低的变化趋势(除O3浓度3月最高),颗粒物和NO_2是主要的超标污染物,其中PM_(2.5)和PM_(10)日均值分别是一级标准的2.2和2.4倍.雾霾期PM_(2.5)、PM_(10)、SO_2、NO_2和CO浓度是非雾霾期的2.4、2.3、1.3、1.5和1.6倍,PM_(2.5)与CO的正相关性最强(0.863),远高于NO_2(0.410)和SO_2(0.399),而非雾霾期三者差异不大,表明雾霾期机动车尾气的贡献更为重要.HYSPLIT后向轨迹和浓度权重轨迹CWT(Concentration-Weighted Trajectory)分析结果表明雾霾时期西南(38.3%)、西北(19.1%)方向和近距离输送(27.3%)的气团携带了较多的污染物,远距离输送是污染物的主要来源.研究结果可为长三角的雾霾污染控制提供数据支撑.展开更多
基金The Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA19040401China Postdoctoral Science Foundation,No.2016M600121+1 种基金National Natural Science Foundation of China,No.41701173,No.41501137The State Key Laboratory of Resources and Environmental Information System
文摘High concentrations of PM_(2.5) are universally considered as a main cause for haze formation. Therefore, it is important to identify the spatial heterogeneity and influencing factors of PM_(2.5) concentrations for regional air quality control and management. In this study, PM_(2.5) data from 2000 to 2015 was determined from an inversion of NASA atmospheric remote sensing images. Using geo-statistics, geographic detectors, and geo-spatial analysis methods, the spatio-temporal evolution patterns and driving factors of PM_(2.5) concentration in China were evaluated. The main results are as follows.(1) In general, the average concentration of PM_(2.5) in China increased quickly and reached its peak value in 2006; subsequently, concentrations remained between 21.84 and 35.08 μg/m3.(2) PM_(2.5) is strikingly heterogeneous in China, with higher concentrations in the north and east than in the south and west. In particular, areas with relatively high PM_(2.5) concentrations are primarily in four regions, the Huang-Huai-Hai Plain, Lower Yangtze River Delta Plain, Sichuan Basin, and Taklimakan Desert. Among them, Beijing-Tianjin-Hebei Region has the highest concentration of PM_(2.5).(3) The center of gravity of PM_(2.5) has generally moved northeastward, which indicates an increasingly serious haze in eastern China. High-value PM_(2.5) concentrations have moved eastward, while low-value PM_(2.5) has moved westward.(4) Spatial autocorrelation analysis indicates a significantly positive spatial correlation. The "High-High" PM_(2.5) agglomeration areas are distributed in the Huang-Huai-Hai Plain, Fenhe-Weihe River Basin, Sichuan Basin, and Jianghan Plain regions. The "Low-Low" PM_(2.5) agglomeration areas include Inner Mongolia and Heilongjiang, north of the Great Wall, Qinghai-Tibet Plateau, and Taiwan, Hainan, and Fujian and other southeast coastal cities and islands.(5) Geographic detection analysis indicates that both natural and anthropogenic factors account for spatial variations in PM_(2.5) concentration. Geographica