China's forests are characterized by young forest age,low carbon density and a large area of planted forests,and thus have high potential to act as carbon sinks in the future.Using China's national forest inve...China's forests are characterized by young forest age,low carbon density and a large area of planted forests,and thus have high potential to act as carbon sinks in the future.Using China's national forest inventory data during 1994-1998 and 1999-2003,and direct field measurements,we investigated the relationships between forest biomass density and forest age for 36 major forest types.Statistical approaches and the predicted future forest area from the national forestry development plan were applied to estimate the potential of forest biomass carbon storage in China during 2000-2050.Under an assumption of continuous natural forest growth,China's existing forest biomass carbon(C) stock would increase from 5.86 Pg C(1 Pg=1015 g) in 1999-2003 to 10.23 Pg C in 2050,resulting in a total increase of 4.37 Pg C.Newly planted forests through afforestation and reforestation will sequestrate an additional 2.86 Pg C in biomass.Overall,China's forests will potentially act as a carbon sink for 7.23 Pg C during the period 2000-2050,with an average carbon sink of 0.14 Pg C yr-1.This suggests that China's forests will be a significant carbon sink in the next 50 years.展开更多
The ages and accumulation rates of ice are important boundary conditions for paleoclimatic ice models. Radardetected isochronic layers can be used to date the ice column beneath the ice surface and infer past accumula...The ages and accumulation rates of ice are important boundary conditions for paleoclimatic ice models. Radardetected isochronic layers can be used to date the ice column beneath the ice surface and infer past accumulation rates. A Deep Ice-Core Drilling Project has been carried out at Kunlun station in the Dome A region, East Antarctica. Radio echo sounding data are collected during the 2004/2005 Chinese National Research Expedition and the 2007/2008 Dome Connection East Antarctica project of the Alfred Wegener Institute(Germany). Radar isochronic layers from the dataset were linked to compare a new deep ice core site from Kunlun station and the Vostok ice core site. Ten visible layers, accounting for ~50% ice thickness at the Kunlun station ice core site, were dated based on the Vostok ice core chronology. At 1,640 m depth below surface, an age of ~160,400 yr was determined, corresponding to a bright layer at Kunlun station. These layers provided geometric information on the past surface of the ice sheet around the ice core site through the Wisconsin glacial stage, Eemian interglacial and Marine Isotope Stage6. Based on a simple ice flow model and the age-depth relationship, we concluded that the region around the Kunlun ice core site had lower past accumulation rates, consistent with the present pattern. The age-depth relationship would thus be expected to correlate and constrain the chronology of the deep ice core at Kunlun station in the future.展开更多
The present paper is a discussion of the problems unsettled in the article "Neolithic Siteat Dadunzi, Yuanmou" published in the 1970s. It studies the division of the cultural layers, the strati-graphical r...The present paper is a discussion of the problems unsettled in the article "Neolithic Siteat Dadunzi, Yuanmou" published in the 1970s. It studies the division of the cultural layers, the strati-graphical relationship between the vestiges, the typological classification and periodization of the pottery,and the chronological relationship of the remains. The research offers a certain contribution to clarifying temporal and spatial relationship of the remains on the site and inquiring into the information about man's activities in this area.展开更多
文摘China's forests are characterized by young forest age,low carbon density and a large area of planted forests,and thus have high potential to act as carbon sinks in the future.Using China's national forest inventory data during 1994-1998 and 1999-2003,and direct field measurements,we investigated the relationships between forest biomass density and forest age for 36 major forest types.Statistical approaches and the predicted future forest area from the national forestry development plan were applied to estimate the potential of forest biomass carbon storage in China during 2000-2050.Under an assumption of continuous natural forest growth,China's existing forest biomass carbon(C) stock would increase from 5.86 Pg C(1 Pg=1015 g) in 1999-2003 to 10.23 Pg C in 2050,resulting in a total increase of 4.37 Pg C.Newly planted forests through afforestation and reforestation will sequestrate an additional 2.86 Pg C in biomass.Overall,China's forests will potentially act as a carbon sink for 7.23 Pg C during the period 2000-2050,with an average carbon sink of 0.14 Pg C yr-1.This suggests that China's forests will be a significant carbon sink in the next 50 years.
基金supported by the National Natural Science Foundation of China(Grant Nos.41876230&41376192)the National Basic Research Program of China(Grant No.2013CBA01804)the Chinese Polar Environment Comprehensive Investigation&Assessment Programs(Grant No.CHINARE2017-04-01)
文摘The ages and accumulation rates of ice are important boundary conditions for paleoclimatic ice models. Radardetected isochronic layers can be used to date the ice column beneath the ice surface and infer past accumulation rates. A Deep Ice-Core Drilling Project has been carried out at Kunlun station in the Dome A region, East Antarctica. Radio echo sounding data are collected during the 2004/2005 Chinese National Research Expedition and the 2007/2008 Dome Connection East Antarctica project of the Alfred Wegener Institute(Germany). Radar isochronic layers from the dataset were linked to compare a new deep ice core site from Kunlun station and the Vostok ice core site. Ten visible layers, accounting for ~50% ice thickness at the Kunlun station ice core site, were dated based on the Vostok ice core chronology. At 1,640 m depth below surface, an age of ~160,400 yr was determined, corresponding to a bright layer at Kunlun station. These layers provided geometric information on the past surface of the ice sheet around the ice core site through the Wisconsin glacial stage, Eemian interglacial and Marine Isotope Stage6. Based on a simple ice flow model and the age-depth relationship, we concluded that the region around the Kunlun ice core site had lower past accumulation rates, consistent with the present pattern. The age-depth relationship would thus be expected to correlate and constrain the chronology of the deep ice core at Kunlun station in the future.
文摘The present paper is a discussion of the problems unsettled in the article "Neolithic Siteat Dadunzi, Yuanmou" published in the 1970s. It studies the division of the cultural layers, the strati-graphical relationship between the vestiges, the typological classification and periodization of the pottery,and the chronological relationship of the remains. The research offers a certain contribution to clarifying temporal and spatial relationship of the remains on the site and inquiring into the information about man's activities in this area.