H13 powder is cladded on steel P20 (base) by continuous COe laser, and the influence of technological pa rameters such as the laser power is analyzed. The 3-D model of synchronous powder feeding is built under Gauss...H13 powder is cladded on steel P20 (base) by continuous COe laser, and the influence of technological pa rameters such as the laser power is analyzed. The 3-D model of synchronous powder feeding is built under Gauss heat source. The simulative results in the heat affected zone are compared with the experimental ones, and the average er rors of width and depth are 15% and 4.5%, respectively. It is found that the simulative results provide basic data for investigating of laser cladding further.展开更多
Effects of Mg on the chemical component and size distribution of Ti-bearing inclusions favored grain refinement of the welding induced coarse-grained heat affected zone (CGHAZ), with enhanced impact toughness in Ti-...Effects of Mg on the chemical component and size distribution of Ti-bearing inclusions favored grain refinement of the welding induced coarse-grained heat affected zone (CGHAZ), with enhanced impact toughness in Ti-killed steels, which were examined based on experimental observations and thermodynamic calculations. The results indicated that the chemical constituents of the inclusions gradually varied from the Ti-O+Ti-Mg-O compound oxide to the Ti-Mg-O+MgO compound oxide and the single-phase MgO, as the Mg content increased from 0.002 3M to 0.006%. A trace addition of Mg (approximately 0. 002%) led to the refinement of Ti-bearing inclusions by creating the Ti-Mg-O compound oxide and provided favorable size distribution of the inclusions for acicular ferrite transformation with a high nucleation rate in the CGHAZ, and a high volume fraction of acicular ferrite was obtained in the CGHAZ with enhanced impact toughness. Otherwise, a high content of Mg (approximately 0. 006%) produced a single-phase MgO, which was impotent to nucleate an acicular ferrite, and a microstructure comprised of a ferrite side plate and a grain boundary ferrite developed in the CGHAZ. The experimental results were confirmed by thermodynamic calculations.展开更多
Effects of Zirconium on the chemical component and size distribution of Ti-bearing inclusions, favored the grain refinement of the welding reduced, coarse-grained heat affected zone (CGHAZ) with enhanced impact toug...Effects of Zirconium on the chemical component and size distribution of Ti-bearing inclusions, favored the grain refinement of the welding reduced, coarse-grained heat affected zone (CGHAZ) with enhanced impact toughness in Ti-killed steels, which were examined based on experimental observations and thermodynamic calculations. It indicated that the chemical constituents of inclusions gradually varied from the TiO oxide to the Ti-O+Zr-O compound oxide and a single phase of the ZrO2 oxide, as the Zr content increased from zero to 0.0100%. A trace of Zr (0.0030%-0.0080%, depending on the oxygen content in liquid steel) provided a large amount of nucleating core for Ti oxide because of the larger specific density of ZrO2 oxide, and produced a small size distribution of the inclusions favorable for acicular ferrite transformation with a high nucleation rate in the CGHAZ, and a high volume fraction of acicular ferrite was obtained in the CGHAZ, with enhanced impact toughness. Otherwise, a high content of Zr (-0.0100%) produced a single phase Zr02, which was impotent to nucleate acicular ferrite, and a microstructure composed of ferrite side plate and grain boundary ferrite developed in the CGHAZ. The experimental results were confirmed by thermodynamic calculations.展开更多
Laser melting deposition was carried out to deposit a 1Cr12Ni2WMoVNb steel bar on a wrought bar of same material. Room-temperature tensile properties of the hybrid fabricated 1Cr12Ni2WMoVNb steel sample were evaluated...Laser melting deposition was carried out to deposit a 1Cr12Ni2WMoVNb steel bar on a wrought bar of same material. Room-temperature tensile properties of the hybrid fabricated 1Cr12Ni2WMoVNb steel sample were evaluated, and microstructure, fracture surface morphology, and hardness profile were analyzed by an optical microscope (OM), a scanning electron microscope (SEM), and a hardness tester. Results show that the hybrid fabricated 1Cr12Ni2WMoVNb steel sample consists of laser deposited zone, wrought substrate zone, and heat affected zone (HAZ) of the wrought substrate. The laser deposited zone has coarse columnar prior austenite grains and fine well-aligned dendritic structure, while the HAZ of the wrought substrate has equiaxed prior austenite grains which are notably finer than those in the wrought substrate zone. Besides, austenitic transformation mechanism of the HAZ of the wrought substrate is different from that of the laser deposited zone during the reheating period of the laser deposition, which determines the different prior austenite grain morphologies of the two zones. Microhardness values of both the laser deposited zone and the HAZ of the wrought substrate are higher than that of the wrought substrate zone. Tensile properties of the hybrid fabricated 1Cr12Ni2WMoVNb steel sample are comparable to those of the wrought bar, and fracture occurs in the wrought substrate zone during the tensile test.展开更多
The microstructure and the characteristics of the inclusions embedded in ferrite matrix in simulated coarse-grain heat affected zone (CGHAZ) of a Ti-Zr-treated high strength low alloy (HSLA) steel have been investigat...The microstructure and the characteristics of the inclusions embedded in ferrite matrix in simulated coarse-grain heat affected zone (CGHAZ) of a Ti-Zr-treated high strength low alloy (HSLA) steel have been investigated. The microstructure of the simulated CGHAZ dominantly consisted of intragranular acicular ferrite (IAF) combining with a small amount of polygonal ferrite (PF), widmanst tten ferrite (WF), bainite ferrite (BF), pearlite and martensite-austenite (M-A) islands. The PF, WF and BF were generally observed at the prior austenite grain boundaries and the interlocking acicular ferrite was usually found intragranularly. It was found that the inclusions were composed of Ti2O3, ZrO2, Al2O3 locating at the center of the particles and MnS lying on the surface layer of the inclusions. The intragranular complex inclusions promoted the acicular ferrite formation and the refinement of microstructure whilst those at prior austenite grain boundaries caused PF formation on the inclusions. The simulated CGHAZ consisting of such complicated microstructure exhibited desired mechanical properties.展开更多
The influence of Nb on microstructure, mechanical property and the transformation kinetics of the coarse grain heat affected zone (CGHAZ) in HSLA steels for different heat inputs, has been investigated. When welded ...The influence of Nb on microstructure, mechanical property and the transformation kinetics of the coarse grain heat affected zone (CGHAZ) in HSLA steels for different heat inputs, has been investigated. When welded at higher heat inputs (100-60 kJ/cm), impact toughness values of the steel without Nb are much higher than those of the steel with Nb, and the lowest span is 153 J at 60 kJ/cm. But only a little higher values are observed at lower heat inputs (40-30 kJ/cm), and the highest span is 68 J at 30 kJ/cm. Dilatation studies indicate that continuous cooling transformation starting temperatures (Ts) of CGHAZ for the steel with Nb are approximately 15-30℃ which are lower than those of the steel without Nb at all heat inputs. For higher heat inputs, Nb in solid solution suppresses ferrite transformation and promotes the formation of granular bainite which has detrimental effect on impact toughness. For lower heat inputs higher Charpy impact energy values in the steel with Nb are associated with the formation of low carbon self-tempered martensite.展开更多
A layer ofAerMet100 steel was coated on the surface of forged 300 M steel using laser cladding technique. The chemical compositions, microstructures, hardness and tensile properties of this AerMet100[300 M material we...A layer ofAerMet100 steel was coated on the surface of forged 300 M steel using laser cladding technique. The chemical compositions, microstructures, hardness and tensile properties of this AerMet100[300 M material were systematically investigated. Results show that the composition of the AerMet100 clad layer is macroscopically homogeneous, and a compositional transition zone with width of 150 μm is observed between the clad layer and heat affected zone. Microstructures in transition zone transform from the fine needle-like bainite in 300 M steel to the lath tempered martensite in AerMet100 clad layer. Microstructures in heat affected zone also gradually change from the thick plate bainite and blocky retained austenite (unstable heat affected zone) to fine needle-like bainite and film-like austenite (stable heat affected zone) due to different thermal cycle processes. Thick plate bainite together with blocky retained austenite in unstable heat affected zone reduce the strength and ductility of AerMet100/300 M material. However, the tensile specimens, consisting of clad layer and stable heat affected zone, show slightly inferior mechanical properties to 300 M steel. Ductile fracture exists in AerMet100 clad layer while quasi-cleavage fracture occurs in the stable heat affected zone.展开更多
Objective: To investigate the effect of Huogu II Formula (活骨 II方 ) with medicinal guide Radix Achyranthis Bidentatae (Ach) on bone marrow stem cells (BMSCs) homing to necrosis area after osteonecrosis of the...Objective: To investigate the effect of Huogu II Formula (活骨 II方 ) with medicinal guide Radix Achyranthis Bidentatae (Ach) on bone marrow stem cells (BMSCs) homing to necrosis area after osteonecrosis of the femoral head (ONFH) frozen by liquid nitrogen in rabbit as well as to explore the mechanism of prevention and treatment for ONFH. Methods: The animal model of ONFH was established by liquid nitrogen frozen on the rabbit left hind leg. Forty-eight Japanese White rabbits were randomly assigned to sham-operated group, model group, Huogu II group, and Huogu II plus Ach group, with 12 rabbits in each. During the course of ONFH animal model establishment, all rabbits were subcutaneously injected with recombinant human granulocyte colony-stimulating factor [rhG-CSF, 30 μg/(kg.day) for continuous 7 days]. Meanwhile, normal saline and decoction of the two formulae were administrated by gavage, respectively. White blood cells (WBC) were counted in peripheral blood before and after injection of rhG-CSF. Materials were drawn on the 2rid and 4th weeks after model built; bone glutamine protein (BGP) and bone morphogenetic protein 2 (BMP2) levels in serum were tested. Histopathologic changes were observed by hematoxylin and eosin (HE) staining. BMP2 mRNA levels were detected with in situ hybridization (iSH) staining. 5-Bromo-2'-deoxyuridine (BrdU) and stromal cell derived factor 1 (SDF-1) were measured by immunohistochemical assay in femoral head of the left hind leg. Results: Compared with the shamoperated group, the ratio of empty lacuna, serum BGP, and SDF-1 level in the model group increased significantly, and BMP2 in both serum and femoral head decreased significantly. However, in comparison with the model group, the empty lacuna ratio of Huogu II group and Huogu II plus Ach group decreased obviously in addition to the levels of serum BGP and BMP2, and the expressions of BMP2 mRNA, BrdU, and SDF-1 increased significantly. Above changes were particularly obv展开更多
In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures i...In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures in heat affected zone by annealing at 1300 ℃ for 10 min and then, quenching in water; the other was to get different simulating solutions of acidic soil in Yingtan in south- east China. The SCC susceptibilities of X70 pipeline steel before and after quenching in the simulating solutions were analyzed using slow stain rate test (SSRT) and potentiodynamic polarization technique to investigate the SCC electrochemical mechanism of different microstructures further. The results show that SCC appears in the original microstructure and the quenched microstructure as the polarization potential decreases. Hydrogen revolution accelerates SCC of the two tested materials within the range of-850 mV to -1200 mV vs. SCE. Microstructural hardening and grain coarsening also increase SCC. The SCC mechanisms are different, anodic dissolution is the key of causing SCC as the polarization potential is higher than the null current potential, and hydrogen embrittlement will play a more important role to SCC as the polarization potential lower than the null current potential.展开更多
Ultrasonic treatment of the solidifying metal is a promising method for improving the quality of fusion welding. A method to combine the ultrasonic waves to the welding process using arc excited ultrasonic emissio...Ultrasonic treatment of the solidifying metal is a promising method for improving the quality of fusion welding. A method to combine the ultrasonic waves to the welding process using arc excited ultrasonic emission, called arc ultrasonic, was high frequency modulation of the arc plasma. The effects of arc ultrasonic on the weld including the fusion zone, the partially melted zone and the heat affected zone are described. The arc ultrasonic energy changes the weld microstructure. In the fusion zone, the primary dendrite arm spacing decreases significantly and more acicular ferrite appears. In the partially melted zone, a large amount of fine grains appear. In the heat affected zone, the width of the tempered zone increases with increasing modulation frequency and the microstructure is refined. The results show that arc ultrasonic is a new and effective way for improving weld quality. 展开更多
During heat treatment processing, microstructures of heat affected zone (HAZ) were formed in X80 pipe- line steel. After observation by optical microscopy, scanning electron microscopy and transmission electron micr...During heat treatment processing, microstructures of heat affected zone (HAZ) were formed in X80 pipe- line steel. After observation by optical microscopy, scanning electron microscopy and transmission electron microsco- py, microstructure of the as-received X80 steel was confirmed to be acicular ferrite, while the microstructures of quenched, normalized and annealed X80 steels were lath bainite, granular ferrite and quasi-polygonal ferrite, respec- tively. After immersion in the simulated acidic soil solution for 48 h, corrosion rates of these four steels were deter- mined by mass loss measurements and corrosion products were examined by Raman spectroscopy and X-ray photoe lectron spectroscopy. Scanning vibrating electrode technique was used to characterize the micro-galvanic corrosion be- haviors of the synthetic bimetallic electrodes which were formed by coupling each of the simulated HAZ microstruc- tures with the as-received steel in direct physical and electric contact. It is demonstrated that the as-received steel acts as cathode in the as-received/quenched and as-received/normalized couples, while the annealed steel acts as cathode when coupling with the as received steel. The distinction of current density between the galvanic couples reduces with prolonging the immersion time.展开更多
The sustainable regeneration of the biggest fishery resource in the Zhoushan Sea area of China has been adversely affected in recent years. Wastewater discharged into the marine ecosystem is the main source of pollut...The sustainable regeneration of the biggest fishery resource in the Zhoushan Sea area of China has been adversely affected in recent years. Wastewater discharged into the marine ecosystem is the main source of pollution. Affected organisms such as hairtail prawn, jellyfish, crab, laver and kelp were monitored, and the contributions and fluxes of three sort of pollutants(oils, Cr and phenol) from the expansion of rural enterprises in the Yangtze River valley, the Qiantang River valley, the Ningbo coastal area and the Zhoushan islands were calculated. More than 16 chemical pollutants were jointly responsible for the decrease in the yield and quality of marine organisms. Furthermore, combined contamination effects and their joint toxicity differed between summer and winter, because they were varied with different temperature, salinity, pH and E h.展开更多
With the rapid development of low alloy steel strength level,more problems caused by welding are exposed day by day.Recently,the efforts have been paid to improve or enchance the low toughness of heated affected zone ...With the rapid development of low alloy steel strength level,more problems caused by welding are exposed day by day.Recently,the efforts have been paid to improve or enchance the low toughness of heated affected zone and welded metal which can enchance the comprehensive mechanical properties that is the core scientific problems of its safe operation by researching crack initiation and crack propragation attracted a rapidly growing interest.This article focuses on the research status and progress of welding technology and joint microstructure and properties of advanced steel materials.The influence of shielding gas on the microstructure evolution of deposited metals,the effect heat input of welded joint performance,interpass temperature and alloy elements on welded joints microstructure and M-A constituent evolution and properties are reviewed in detail.And for the heat affected zone,the grain size and microstructure as well as the shape,size,and distribution of M-A constituent,have a significant impact on the impact toughness.This paper is an attempt to review the effect of different welding process parameters on welded metal and HAZ of HSLA steels.展开更多
One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ) In the present study, the microstmctural characteristics of tungsten inert gas (TI...One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ) In the present study, the microstmctural characteristics of tungsten inert gas (TIG) welded AISI409 ferritic stainless steel were investigated by electron backscattered diffraction (EBSD), and the effects of welding parameters on the grain size, local misorientation, and low-angle grain boundaries were studied. A 3-D finite element model (FEM) was developed to predict the effects of welding parameters on the holding time of the HAZ above the critical temperature of grain growth. It is found that the base metal is not fully recrystallized. During the welding, complete recrystallization is followed by severe grain growth. A decrease in the number of low-angle grain boundaries is observed within the HAZ. FEM results show that the final state of residual sWains is caused by competition between welding plastic strains and their release by recrystallization. Still, the decisive factor for grain growth is heat input.展开更多
In this work, the morphologies of weld of 7075-T6 aluminum alloy via friction stir welding (FSW) were analyzed by optical microscopy, the temperature field was attained by numerical simulation, and the effect of tem...In this work, the morphologies of weld of 7075-T6 aluminum alloy via friction stir welding (FSW) were analyzed by optical microscopy, the temperature field was attained by numerical simulation, and the effect of temperature on material transfer behavior in the thermal-mechanical affected zone (TMAZ) at different stages was mainly investigated. The FSW process consists of three stages. It is very interesting to find that the maximum transfer displacement of material appears at the final stage of welding process, then at the stable stage and at the initial stage, which results from the difference of peak temperatures at different stages. At any stage, the material in TMAZ near the surface of weld transfers downwards, the material in the middle of weld moves upwards and the material near the bottom of weld hardly moves. In any cross section of weld, the largest transfer displacement of material appears in the middle of weld. The increase of rotational velocity and the decrease of welding speed are both beneficial to the transfer displacement of material in the middle of weld.展开更多
Excellent Heat Affected Zone Toughness Technology Improved by use of Strong Deoxidizers (ETISD Technology) has been developed by Baosteel. When deoxidation of molten steel is conducted at the precisely controlled oxyg...Excellent Heat Affected Zone Toughness Technology Improved by use of Strong Deoxidizers (ETISD Technology) has been developed by Baosteel. When deoxidation of molten steel is conducted at the precisely controlled oxygen concentrations, the formation of the micro-meter inclusions and the nano-meter precipitates in the steel plate can be effectively controlled. During the welding process with high-heat input, the formation of acicular ferrite can be selectively promoted with the aid of micro-meter inclusions; the growth of γ grain can also be selectively restrained by the pinning effect of nano-meter precipitates. After welding with high-heat input of 400 kJ/cm, excellent heat affected zone toughness can be obtained for the steel plates with both of the above microstructures, and the average absorbed energy is greater than 200 J for V notch Charpy impact test at -20℃ .展开更多
The influence of the second thermal cycle on coarse grained zone (CGHAZ) toughness of X70 steel is studied by weld thermal simulation test, scanning electron microscope and electron microprobe. The results show that ...The influence of the second thermal cycle on coarse grained zone (CGHAZ) toughness of X70 steel is studied by weld thermal simulation test, scanning electron microscope and electron microprobe. The results show that the CGHAZ toughness is improved after the second thermal cycle but being heated during the intercritical HAZ (ICHAZ). The CGHAZ toughness decreases evidently after being heated during partially transformed zone, which chiefly results from the carbon segregation to the grain boundaries of primal austenite, thus forming high carbon martensite austenite (M A) constituent and bringing serious intercritically reheated coarse grain HAZ (IRCGHAZ) embrittlement.展开更多
基金Item Sponsored by Fund of Office of Science and Technology of Zhejiang Province of China(2008C31041)
文摘H13 powder is cladded on steel P20 (base) by continuous COe laser, and the influence of technological pa rameters such as the laser power is analyzed. The 3-D model of synchronous powder feeding is built under Gauss heat source. The simulative results in the heat affected zone are compared with the experimental ones, and the average er rors of width and depth are 15% and 4.5%, respectively. It is found that the simulative results provide basic data for investigating of laser cladding further.
文摘Effects of Mg on the chemical component and size distribution of Ti-bearing inclusions favored grain refinement of the welding induced coarse-grained heat affected zone (CGHAZ), with enhanced impact toughness in Ti-killed steels, which were examined based on experimental observations and thermodynamic calculations. The results indicated that the chemical constituents of the inclusions gradually varied from the Ti-O+Ti-Mg-O compound oxide to the Ti-Mg-O+MgO compound oxide and the single-phase MgO, as the Mg content increased from 0.002 3M to 0.006%. A trace addition of Mg (approximately 0. 002%) led to the refinement of Ti-bearing inclusions by creating the Ti-Mg-O compound oxide and provided favorable size distribution of the inclusions for acicular ferrite transformation with a high nucleation rate in the CGHAZ, and a high volume fraction of acicular ferrite was obtained in the CGHAZ with enhanced impact toughness. Otherwise, a high content of Mg (approximately 0. 006%) produced a single-phase MgO, which was impotent to nucleate an acicular ferrite, and a microstructure comprised of a ferrite side plate and a grain boundary ferrite developed in the CGHAZ. The experimental results were confirmed by thermodynamic calculations.
文摘Effects of Zirconium on the chemical component and size distribution of Ti-bearing inclusions, favored the grain refinement of the welding reduced, coarse-grained heat affected zone (CGHAZ) with enhanced impact toughness in Ti-killed steels, which were examined based on experimental observations and thermodynamic calculations. It indicated that the chemical constituents of inclusions gradually varied from the TiO oxide to the Ti-O+Zr-O compound oxide and a single phase of the ZrO2 oxide, as the Zr content increased from zero to 0.0100%. A trace of Zr (0.0030%-0.0080%, depending on the oxygen content in liquid steel) provided a large amount of nucleating core for Ti oxide because of the larger specific density of ZrO2 oxide, and produced a small size distribution of the inclusions favorable for acicular ferrite transformation with a high nucleation rate in the CGHAZ, and a high volume fraction of acicular ferrite was obtained in the CGHAZ, with enhanced impact toughness. Otherwise, a high content of Zr (-0.0100%) produced a single phase Zr02, which was impotent to nucleate acicular ferrite, and a microstructure composed of ferrite side plate and grain boundary ferrite developed in the CGHAZ. The experimental results were confirmed by thermodynamic calculations.
基金financial supports from the Cheung Kong Scholars and Innovative Research Team Program of Ministry of Education (No. IRT0805)the National Basic Research Program of China (No. 2010CB731705)
文摘Laser melting deposition was carried out to deposit a 1Cr12Ni2WMoVNb steel bar on a wrought bar of same material. Room-temperature tensile properties of the hybrid fabricated 1Cr12Ni2WMoVNb steel sample were evaluated, and microstructure, fracture surface morphology, and hardness profile were analyzed by an optical microscope (OM), a scanning electron microscope (SEM), and a hardness tester. Results show that the hybrid fabricated 1Cr12Ni2WMoVNb steel sample consists of laser deposited zone, wrought substrate zone, and heat affected zone (HAZ) of the wrought substrate. The laser deposited zone has coarse columnar prior austenite grains and fine well-aligned dendritic structure, while the HAZ of the wrought substrate has equiaxed prior austenite grains which are notably finer than those in the wrought substrate zone. Besides, austenitic transformation mechanism of the HAZ of the wrought substrate is different from that of the laser deposited zone during the reheating period of the laser deposition, which determines the different prior austenite grain morphologies of the two zones. Microhardness values of both the laser deposited zone and the HAZ of the wrought substrate are higher than that of the wrought substrate zone. Tensile properties of the hybrid fabricated 1Cr12Ni2WMoVNb steel sample are comparable to those of the wrought bar, and fracture occurs in the wrought substrate zone during the tensile test.
文摘The microstructure and the characteristics of the inclusions embedded in ferrite matrix in simulated coarse-grain heat affected zone (CGHAZ) of a Ti-Zr-treated high strength low alloy (HSLA) steel have been investigated. The microstructure of the simulated CGHAZ dominantly consisted of intragranular acicular ferrite (IAF) combining with a small amount of polygonal ferrite (PF), widmanst tten ferrite (WF), bainite ferrite (BF), pearlite and martensite-austenite (M-A) islands. The PF, WF and BF were generally observed at the prior austenite grain boundaries and the interlocking acicular ferrite was usually found intragranularly. It was found that the inclusions were composed of Ti2O3, ZrO2, Al2O3 locating at the center of the particles and MnS lying on the surface layer of the inclusions. The intragranular complex inclusions promoted the acicular ferrite formation and the refinement of microstructure whilst those at prior austenite grain boundaries caused PF formation on the inclusions. The simulated CGHAZ consisting of such complicated microstructure exhibited desired mechanical properties.
文摘The influence of Nb on microstructure, mechanical property and the transformation kinetics of the coarse grain heat affected zone (CGHAZ) in HSLA steels for different heat inputs, has been investigated. When welded at higher heat inputs (100-60 kJ/cm), impact toughness values of the steel without Nb are much higher than those of the steel with Nb, and the lowest span is 153 J at 60 kJ/cm. But only a little higher values are observed at lower heat inputs (40-30 kJ/cm), and the highest span is 68 J at 30 kJ/cm. Dilatation studies indicate that continuous cooling transformation starting temperatures (Ts) of CGHAZ for the steel with Nb are approximately 15-30℃ which are lower than those of the steel without Nb at all heat inputs. For higher heat inputs, Nb in solid solution suppresses ferrite transformation and promotes the formation of granular bainite which has detrimental effect on impact toughness. For lower heat inputs higher Charpy impact energy values in the steel with Nb are associated with the formation of low carbon self-tempered martensite.
基金supported financially by the Joint Founds of National Natural Science Foundation of China(NSFC)-Liaoning(No.U1508213)
文摘A layer ofAerMet100 steel was coated on the surface of forged 300 M steel using laser cladding technique. The chemical compositions, microstructures, hardness and tensile properties of this AerMet100[300 M material were systematically investigated. Results show that the composition of the AerMet100 clad layer is macroscopically homogeneous, and a compositional transition zone with width of 150 μm is observed between the clad layer and heat affected zone. Microstructures in transition zone transform from the fine needle-like bainite in 300 M steel to the lath tempered martensite in AerMet100 clad layer. Microstructures in heat affected zone also gradually change from the thick plate bainite and blocky retained austenite (unstable heat affected zone) to fine needle-like bainite and film-like austenite (stable heat affected zone) due to different thermal cycle processes. Thick plate bainite together with blocky retained austenite in unstable heat affected zone reduce the strength and ductility of AerMet100/300 M material. However, the tensile specimens, consisting of clad layer and stable heat affected zone, show slightly inferior mechanical properties to 300 M steel. Ductile fracture exists in AerMet100 clad layer while quasi-cleavage fracture occurs in the stable heat affected zone.
基金Supported by the National Natural Science Foundation of China (No.30672770)
文摘Objective: To investigate the effect of Huogu II Formula (活骨 II方 ) with medicinal guide Radix Achyranthis Bidentatae (Ach) on bone marrow stem cells (BMSCs) homing to necrosis area after osteonecrosis of the femoral head (ONFH) frozen by liquid nitrogen in rabbit as well as to explore the mechanism of prevention and treatment for ONFH. Methods: The animal model of ONFH was established by liquid nitrogen frozen on the rabbit left hind leg. Forty-eight Japanese White rabbits were randomly assigned to sham-operated group, model group, Huogu II group, and Huogu II plus Ach group, with 12 rabbits in each. During the course of ONFH animal model establishment, all rabbits were subcutaneously injected with recombinant human granulocyte colony-stimulating factor [rhG-CSF, 30 μg/(kg.day) for continuous 7 days]. Meanwhile, normal saline and decoction of the two formulae were administrated by gavage, respectively. White blood cells (WBC) were counted in peripheral blood before and after injection of rhG-CSF. Materials were drawn on the 2rid and 4th weeks after model built; bone glutamine protein (BGP) and bone morphogenetic protein 2 (BMP2) levels in serum were tested. Histopathologic changes were observed by hematoxylin and eosin (HE) staining. BMP2 mRNA levels were detected with in situ hybridization (iSH) staining. 5-Bromo-2'-deoxyuridine (BrdU) and stromal cell derived factor 1 (SDF-1) were measured by immunohistochemical assay in femoral head of the left hind leg. Results: Compared with the shamoperated group, the ratio of empty lacuna, serum BGP, and SDF-1 level in the model group increased significantly, and BMP2 in both serum and femoral head decreased significantly. However, in comparison with the model group, the empty lacuna ratio of Huogu II group and Huogu II plus Ach group decreased obviously in addition to the levels of serum BGP and BMP2, and the expressions of BMP2 mRNA, BrdU, and SDF-1 increased significantly. Above changes were particularly obv
基金supported by the National Science and Technology Infrastructure Platforms Construction Projects of China (No.2005DKA 10400)the Major Fund in the Tenth Five-Year Development Plan of China (No.50499333-08)
文摘In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures in heat affected zone by annealing at 1300 ℃ for 10 min and then, quenching in water; the other was to get different simulating solutions of acidic soil in Yingtan in south- east China. The SCC susceptibilities of X70 pipeline steel before and after quenching in the simulating solutions were analyzed using slow stain rate test (SSRT) and potentiodynamic polarization technique to investigate the SCC electrochemical mechanism of different microstructures further. The results show that SCC appears in the original microstructure and the quenched microstructure as the polarization potential decreases. Hydrogen revolution accelerates SCC of the two tested materials within the range of-850 mV to -1200 mV vs. SCE. Microstructural hardening and grain coarsening also increase SCC. The SCC mechanisms are different, anodic dissolution is the key of causing SCC as the polarization potential is higher than the null current potential, and hydrogen embrittlement will play a more important role to SCC as the polarization potential lower than the null current potential.
基金Supported by the National Natural Science Foundation of China ( No.5 9775 0 61)
文摘Ultrasonic treatment of the solidifying metal is a promising method for improving the quality of fusion welding. A method to combine the ultrasonic waves to the welding process using arc excited ultrasonic emission, called arc ultrasonic, was high frequency modulation of the arc plasma. The effects of arc ultrasonic on the weld including the fusion zone, the partially melted zone and the heat affected zone are described. The arc ultrasonic energy changes the weld microstructure. In the fusion zone, the primary dendrite arm spacing decreases significantly and more acicular ferrite appears. In the partially melted zone, a large amount of fine grains appear. In the heat affected zone, the width of the tempered zone increases with increasing modulation frequency and the microstructure is refined. The results show that arc ultrasonic is a new and effective way for improving weld quality.
基金Sponsored by National Natural Science Foundation of China(51171025,51131001)Beijing Postdoctoral Research Foundation of China(2013M540829)
文摘During heat treatment processing, microstructures of heat affected zone (HAZ) were formed in X80 pipe- line steel. After observation by optical microscopy, scanning electron microscopy and transmission electron microsco- py, microstructure of the as-received X80 steel was confirmed to be acicular ferrite, while the microstructures of quenched, normalized and annealed X80 steels were lath bainite, granular ferrite and quasi-polygonal ferrite, respec- tively. After immersion in the simulated acidic soil solution for 48 h, corrosion rates of these four steels were deter- mined by mass loss measurements and corrosion products were examined by Raman spectroscopy and X-ray photoe lectron spectroscopy. Scanning vibrating electrode technique was used to characterize the micro-galvanic corrosion be- haviors of the synthetic bimetallic electrodes which were formed by coupling each of the simulated HAZ microstruc- tures with the as-received steel in direct physical and electric contact. It is demonstrated that the as-received steel acts as cathode in the as-received/quenched and as-received/normalized couples, while the annealed steel acts as cathode when coupling with the as received steel. The distinction of current density between the galvanic couples reduces with prolonging the immersion time.
文摘The sustainable regeneration of the biggest fishery resource in the Zhoushan Sea area of China has been adversely affected in recent years. Wastewater discharged into the marine ecosystem is the main source of pollution. Affected organisms such as hairtail prawn, jellyfish, crab, laver and kelp were monitored, and the contributions and fluxes of three sort of pollutants(oils, Cr and phenol) from the expansion of rural enterprises in the Yangtze River valley, the Qiantang River valley, the Ningbo coastal area and the Zhoushan islands were calculated. More than 16 chemical pollutants were jointly responsible for the decrease in the yield and quality of marine organisms. Furthermore, combined contamination effects and their joint toxicity differed between summer and winter, because they were varied with different temperature, salinity, pH and E h.
文摘With the rapid development of low alloy steel strength level,more problems caused by welding are exposed day by day.Recently,the efforts have been paid to improve or enchance the low toughness of heated affected zone and welded metal which can enchance the comprehensive mechanical properties that is the core scientific problems of its safe operation by researching crack initiation and crack propragation attracted a rapidly growing interest.This article focuses on the research status and progress of welding technology and joint microstructure and properties of advanced steel materials.The influence of shielding gas on the microstructure evolution of deposited metals,the effect heat input of welded joint performance,interpass temperature and alloy elements on welded joints microstructure and M-A constituent evolution and properties are reviewed in detail.And for the heat affected zone,the grain size and microstructure as well as the shape,size,and distribution of M-A constituent,have a significant impact on the impact toughness.This paper is an attempt to review the effect of different welding process parameters on welded metal and HAZ of HSLA steels.
文摘One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ) In the present study, the microstmctural characteristics of tungsten inert gas (TIG) welded AISI409 ferritic stainless steel were investigated by electron backscattered diffraction (EBSD), and the effects of welding parameters on the grain size, local misorientation, and low-angle grain boundaries were studied. A 3-D finite element model (FEM) was developed to predict the effects of welding parameters on the holding time of the HAZ above the critical temperature of grain growth. It is found that the base metal is not fully recrystallized. During the welding, complete recrystallization is followed by severe grain growth. A decrease in the number of low-angle grain boundaries is observed within the HAZ. FEM results show that the final state of residual sWains is caused by competition between welding plastic strains and their release by recrystallization. Still, the decisive factor for grain growth is heat input.
基金the National Natural Science Foundation of China (No.51204111)the Education Department Foundation of Liaoning Province (No.L2012047)the State Key Lab of Advanced Welding and Joining in Harbin Institute of Technology (AWJ-M13-07)
文摘In this work, the morphologies of weld of 7075-T6 aluminum alloy via friction stir welding (FSW) were analyzed by optical microscopy, the temperature field was attained by numerical simulation, and the effect of temperature on material transfer behavior in the thermal-mechanical affected zone (TMAZ) at different stages was mainly investigated. The FSW process consists of three stages. It is very interesting to find that the maximum transfer displacement of material appears at the final stage of welding process, then at the stable stage and at the initial stage, which results from the difference of peak temperatures at different stages. At any stage, the material in TMAZ near the surface of weld transfers downwards, the material in the middle of weld moves upwards and the material near the bottom of weld hardly moves. In any cross section of weld, the largest transfer displacement of material appears in the middle of weld. The increase of rotational velocity and the decrease of welding speed are both beneficial to the transfer displacement of material in the middle of weld.
文摘Excellent Heat Affected Zone Toughness Technology Improved by use of Strong Deoxidizers (ETISD Technology) has been developed by Baosteel. When deoxidation of molten steel is conducted at the precisely controlled oxygen concentrations, the formation of the micro-meter inclusions and the nano-meter precipitates in the steel plate can be effectively controlled. During the welding process with high-heat input, the formation of acicular ferrite can be selectively promoted with the aid of micro-meter inclusions; the growth of γ grain can also be selectively restrained by the pinning effect of nano-meter precipitates. After welding with high-heat input of 400 kJ/cm, excellent heat affected zone toughness can be obtained for the steel plates with both of the above microstructures, and the average absorbed energy is greater than 200 J for V notch Charpy impact test at -20℃ .
文摘The influence of the second thermal cycle on coarse grained zone (CGHAZ) toughness of X70 steel is studied by weld thermal simulation test, scanning electron microscope and electron microprobe. The results show that the CGHAZ toughness is improved after the second thermal cycle but being heated during the intercritical HAZ (ICHAZ). The CGHAZ toughness decreases evidently after being heated during partially transformed zone, which chiefly results from the carbon segregation to the grain boundaries of primal austenite, thus forming high carbon martensite austenite (M A) constituent and bringing serious intercritically reheated coarse grain HAZ (IRCGHAZ) embrittlement.