The paper presents an analytical study of the helicopter rotor vibratory loadreduction design optimization with aeroelastic stability constraints. The composite rotor blade ismodeled by beam type finite elements, and ...The paper presents an analytical study of the helicopter rotor vibratory loadreduction design optimization with aeroelastic stability constraints. The composite rotor blade ismodeled by beam type finite elements, and warping deformation is taken into consideration for2-dimension analysis, while the one-dimension nonlinear differential equations of blade motion areformulated via Hamilton's principle. The rotor hub vibratory loads is chosen as the objectivefunction, while rotor blade section construction parameter, composite material ply structure andblade tip swept angle as the design variables, and au-torotation inertia, natural frequency andaeroelastic stability as the constraints. A 3-bladed rotor is designed, as an example, based on thevibratory hub load reduction optimization process with swept tip angle and composite material. Thecalculating results show a 24. 9 percent-33 percent reduction of 3/rev hub loads in comparison withthe base-line rotor.展开更多
文摘The paper presents an analytical study of the helicopter rotor vibratory loadreduction design optimization with aeroelastic stability constraints. The composite rotor blade ismodeled by beam type finite elements, and warping deformation is taken into consideration for2-dimension analysis, while the one-dimension nonlinear differential equations of blade motion areformulated via Hamilton's principle. The rotor hub vibratory loads is chosen as the objectivefunction, while rotor blade section construction parameter, composite material ply structure andblade tip swept angle as the design variables, and au-torotation inertia, natural frequency andaeroelastic stability as the constraints. A 3-bladed rotor is designed, as an example, based on thevibratory hub load reduction optimization process with swept tip angle and composite material. Thecalculating results show a 24. 9 percent-33 percent reduction of 3/rev hub loads in comparison withthe base-line rotor.