基于CFD分析软件Star CCM+,结合计算气动声学理论,对某汽车空气调节系统(HVAC)离心风机工作过程的流场和气动噪声进行数值模拟分析.采用Reynolds平均数值模拟(RANS)标准k-ε湍流模型模拟稳态流场,利用大涡模拟(LES)湍流模型和FW-H方程...基于CFD分析软件Star CCM+,结合计算气动声学理论,对某汽车空气调节系统(HVAC)离心风机工作过程的流场和气动噪声进行数值模拟分析.采用Reynolds平均数值模拟(RANS)标准k-ε湍流模型模拟稳态流场,利用大涡模拟(LES)湍流模型和FW-H方程分析瞬态气动噪声,通过监测离心风机内部和外部布置点测得压力脉动,并由傅里叶变换得到监测点声压级频谱.结果表明,离心风机主要噪声是叶轮旋转产生的离散噪声(达98 d B),可适当增加叶片数,调整叶片间距,以减小离散噪声.本方法可为其他类型风机的气动噪声数值模拟提供一种有效的分析手段.展开更多
DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structu...DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h~(-1)) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.展开更多
Landing gears of commercial aircraft make an important contribution to total aircraft noise in the approach configuration. Using fairings to shield components from high speed impingement reduces noise. Furthermore, pe...Landing gears of commercial aircraft make an important contribution to total aircraft noise in the approach configuration. Using fairings to shield components from high speed impingement reduces noise. Furthermore, perforating these fairings has been confirmed by flight tests to further enable noise reduction. Following an earlier fundamental study of the application of perforated fairings, a study has been performed to investigate and optimize the benefits of bleeding air through landing gear fairings. By means of wind tunnel tests, an aerodynamic and acoustic survey has been performed on a simplified generic main landing gear to explore the influence of (perforated) fairings on the lower part of the gear. The results show that for this specific case, the application of impermeable fairings reduces noise in the mid- and high frequency range by shielding sharp edged components from high velocity impingement. However, below 1 kHz the noise is shown to increase significantly. Application of the perforations is shown to diminish this low frequency increase whilst maintaining the reduction in the mid- and high frequency range. The aerodynamic and acoustic measurements point in the direction of the separated flow of the fairings interacting with the downstream gear components responsible for the low frequency noise increase. Bleeding of the air through the fairings reduces the large scale turbulence in the proximity of these components and hence diminishes the low frequency noise increase.展开更多
文摘基于CFD分析软件Star CCM+,结合计算气动声学理论,对某汽车空气调节系统(HVAC)离心风机工作过程的流场和气动噪声进行数值模拟分析.采用Reynolds平均数值模拟(RANS)标准k-ε湍流模型模拟稳态流场,利用大涡模拟(LES)湍流模型和FW-H方程分析瞬态气动噪声,通过监测离心风机内部和外部布置点测得压力脉动,并由傅里叶变换得到监测点声压级频谱.结果表明,离心风机主要噪声是叶轮旋转产生的离散噪声(达98 d B),可适当增加叶片数,调整叶片间距,以减小离散噪声.本方法可为其他类型风机的气动噪声数值模拟提供一种有效的分析手段.
基金Supported by Program for Changjiang Scholars and Innovative Research Team in University,Ministry of Education of China(PCSIRT)
文摘DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h~(-1)) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.
文摘Landing gears of commercial aircraft make an important contribution to total aircraft noise in the approach configuration. Using fairings to shield components from high speed impingement reduces noise. Furthermore, perforating these fairings has been confirmed by flight tests to further enable noise reduction. Following an earlier fundamental study of the application of perforated fairings, a study has been performed to investigate and optimize the benefits of bleeding air through landing gear fairings. By means of wind tunnel tests, an aerodynamic and acoustic survey has been performed on a simplified generic main landing gear to explore the influence of (perforated) fairings on the lower part of the gear. The results show that for this specific case, the application of impermeable fairings reduces noise in the mid- and high frequency range by shielding sharp edged components from high velocity impingement. However, below 1 kHz the noise is shown to increase significantly. Application of the perforations is shown to diminish this low frequency increase whilst maintaining the reduction in the mid- and high frequency range. The aerodynamic and acoustic measurements point in the direction of the separated flow of the fairings interacting with the downstream gear components responsible for the low frequency noise increase. Bleeding of the air through the fairings reduces the large scale turbulence in the proximity of these components and hence diminishes the low frequency noise increase.