首先,设计了节点自适应传感半径调整算法(AASR,adaptive adjustment of sensing radius),通过节点自适应选择最佳的覆盖范围,有效地进行节点覆盖控制,减少节点能量虚耗,提高覆盖效率。其次,从调整效果、能量消耗和覆盖冗余度3个方面对...首先,设计了节点自适应传感半径调整算法(AASR,adaptive adjustment of sensing radius),通过节点自适应选择最佳的覆盖范围,有效地进行节点覆盖控制,减少节点能量虚耗,提高覆盖效率。其次,从调整效果、能量消耗和覆盖冗余度3个方面对节点自适应传感半径调整算法进行了模拟实验和分析。仿真结果表明,AASR能够有效提高节点生存时间,减少能量消耗,提高覆盖率。展开更多
This paper presents a singularity robust path planning for space manipulator to achieve base (satellite) attitude adjustment and end-effector task. The base attitude adjustment by the movement of manipulator will sa...This paper presents a singularity robust path planning for space manipulator to achieve base (satellite) attitude adjustment and end-effector task. The base attitude adjustment by the movement of manipulator will save propellant compared with conventional attitude control system. A task-priority reaction null-space control method is applied to achieve the primary task of adjusting attitude and secondary task of accomplishing end-effector task. Furthermore, the algorithm singularity is eliminated in the proposed algorithm compared with conventional reaction null-space algorithm. And the singular value filtering decomposition is introduced to dispose the dynamic singularity, the unit quaternion is also introduced to overcome representation singularity. Hence, a singularity robust path planning algorithm of space robot for base attitude adjustment is derived. A real time simulation system of the space robot under Linux/RTAl (realtime application interface) is developed to verify and test the feasibility and reliability of the method. The experimental results demonstrate the feasibility of online base attitude adjustment of space robot by the proposed algorithm.展开更多
文摘首先,设计了节点自适应传感半径调整算法(AASR,adaptive adjustment of sensing radius),通过节点自适应选择最佳的覆盖范围,有效地进行节点覆盖控制,减少节点能量虚耗,提高覆盖效率。其次,从调整效果、能量消耗和覆盖冗余度3个方面对节点自适应传感半径调整算法进行了模拟实验和分析。仿真结果表明,AASR能够有效提高节点生存时间,减少能量消耗,提高覆盖率。
基金supported by National Program on Key Basic Research Project(973 Program,No.2013CB733103)the Program for New Century Excellent Talents in University(No.NCET-10-0058)
文摘This paper presents a singularity robust path planning for space manipulator to achieve base (satellite) attitude adjustment and end-effector task. The base attitude adjustment by the movement of manipulator will save propellant compared with conventional attitude control system. A task-priority reaction null-space control method is applied to achieve the primary task of adjusting attitude and secondary task of accomplishing end-effector task. Furthermore, the algorithm singularity is eliminated in the proposed algorithm compared with conventional reaction null-space algorithm. And the singular value filtering decomposition is introduced to dispose the dynamic singularity, the unit quaternion is also introduced to overcome representation singularity. Hence, a singularity robust path planning algorithm of space robot for base attitude adjustment is derived. A real time simulation system of the space robot under Linux/RTAl (realtime application interface) is developed to verify and test the feasibility and reliability of the method. The experimental results demonstrate the feasibility of online base attitude adjustment of space robot by the proposed algorithm.