期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Newton-conjugate gradient (CG) augmented Lagrangian method for path constrained dynamic process optimization
1
作者 Qiang ZHANG, Shurong LI, Yang LEI, Xiaodong ZHANG College of Information and Control Engineering, China University of Petroleum (East China), Qingdao Shandong 266555, China 《控制理论与应用(英文版)》 EI 2012年第2期223-228,共6页
In this paper, a Newton-conjugate gradient (CG) augmented Lagrangian method is proposed for solving the path constrained dynamic process optimization problems. The path constraints are simplified as a single final t... In this paper, a Newton-conjugate gradient (CG) augmented Lagrangian method is proposed for solving the path constrained dynamic process optimization problems. The path constraints are simplified as a single final time constraint by using a novel constraint aggregation function. Then, a control vector parameterization (CVP) approach is applied to convert the constraints simplified dynamic optimization problem into a nonlinear programming (NLP) problem with inequality constraints. By constructing an augmented Lagrangian function, the inequality constraints are introduced into the augmented objective function, and a box constrained NLP problem is generated. Then, a linear search Newton-CG approach, also known as truncated Newton (TN) approach, is applied to solve the problem. By constructing the Hamiltonian functions of objective and constraint functions, two adjoint systems are generated to calculate the gradients which are needed in the process of NLP solution. Simulation examlales demonstrate the effectiveness of the algorithm. 展开更多
关键词 Dynamic process optimization Constraint aggregation Augmented Lagrangian Newton-CG approach adjoint formulation
原文传递
二次求解具有控制切换结构的动态优化问题(英文) 被引量:1
2
作者 张强 李树荣 +1 位作者 雷阳 张晓东 《化工学报》 EI CAS CSCD 北大核心 2011年第8期2129-2134,共6页
基于多级表述策略,提出了二次求解具有控制切换结构动态优化问题的数值方法。基于常用的优化方法获得初始控制结构。动态优化问题根据控制结构进行分级,每一级对应一个特定的控制弧段,进而将原问题表述为一个多级动态优化问题。基于控... 基于多级表述策略,提出了二次求解具有控制切换结构动态优化问题的数值方法。基于常用的优化方法获得初始控制结构。动态优化问题根据控制结构进行分级,每一级对应一个特定的控制弧段,进而将原问题表述为一个多级动态优化问题。基于控制向量参数化(CVP),多级动态优化问题转化为一个非线性规划(NLP)问题进行求解。控制参数和级长作为优化变量。基于Pontryagin极大值原理,构造多级伴随系统,进而获得NLP求解器所需的梯度信息。仿真实例验证了方法的有效性。 展开更多
关键词 多级问题 动态优化 控制切换结构 伴随表述
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部