For more than two decades, immunologists have been using the so-called Th1/Th2 paradigm to explain most of the phenomena related to adaptive immunity. The Thl/Th2 paradigm implied the existence of two different, mutu-...For more than two decades, immunologists have been using the so-called Th1/Th2 paradigm to explain most of the phenomena related to adaptive immunity. The Thl/Th2 paradigm implied the existence of two different, mutu- ally regulated, CD4+ T helper subsets: Thl cells, driving cell-mediated immune responses involved in tissue damage and fighting infection against intracellular parasites; and Th2 cells that mediate IgE production and are particu- larly involved in eosinophilic inflammation, allergy and clearance of helminthic infections. A third member of the T helper set, IL-17-producing CD4+ T cells, now called Th17 cells, was recently described as a distinct lineage that does not share developmental pathways with either Thl or Th2 cells. The Th17 subset has been linked to autoimmune disorders, being able to produce IL-17, IL-17F and IL-21 among other inflammatory cytokines. Interestingly, it has been reported that there is not only a cross-regulation among Thl, Th2 and Th17 effector cells but there is also a di- chotomy in the generation of Th17 and T regulatory cells. Therefore, Treg and Th17 effector cells arise in a mutually exclusive fashion, depending on whether they are activated in the presence of TGF-β or TGF-β plus inflammatory cytokines such as IL-6. This review will address the discovery of the Th17 cells, and recent progress on their development and regulation.展开更多
Chronic hepatitis B virus(HBV)infection is an international health problem with extremely high mortality and morbidity rates.Although current clinical chronic hepatitis B(CHB)treatment strategies can partly inhibit an...Chronic hepatitis B virus(HBV)infection is an international health problem with extremely high mortality and morbidity rates.Although current clinical chronic hepatitis B(CHB)treatment strategies can partly inhibit and eliminate HBV,viral breakthrough may result due to non-adherence to treatment,the emergence of viral resistance,and a long treatment cycle.Persistent CHB infection arises as a consequence of complex interactions between the virus and the host innate and adaptive immune systems.Therefore,understanding the immune escape mechanisms involved in persistent HBV infection is important for designing novel CHB treatment strategies to clear HBV and achieve long-lasting immune control.This review details the immunological and biological characteristics and escape mechanisms of HBV and the novel immune-based therapies that are currently used for treating HBV.展开更多
文摘For more than two decades, immunologists have been using the so-called Th1/Th2 paradigm to explain most of the phenomena related to adaptive immunity. The Thl/Th2 paradigm implied the existence of two different, mutu- ally regulated, CD4+ T helper subsets: Thl cells, driving cell-mediated immune responses involved in tissue damage and fighting infection against intracellular parasites; and Th2 cells that mediate IgE production and are particu- larly involved in eosinophilic inflammation, allergy and clearance of helminthic infections. A third member of the T helper set, IL-17-producing CD4+ T cells, now called Th17 cells, was recently described as a distinct lineage that does not share developmental pathways with either Thl or Th2 cells. The Th17 subset has been linked to autoimmune disorders, being able to produce IL-17, IL-17F and IL-21 among other inflammatory cytokines. Interestingly, it has been reported that there is not only a cross-regulation among Thl, Th2 and Th17 effector cells but there is also a di- chotomy in the generation of Th17 and T regulatory cells. Therefore, Treg and Th17 effector cells arise in a mutually exclusive fashion, depending on whether they are activated in the presence of TGF-β or TGF-β plus inflammatory cytokines such as IL-6. This review will address the discovery of the Th17 cells, and recent progress on their development and regulation.
基金Supported by National Science Foundation for Young Scientists of China, No.82001687National Major Science and Technology Project for Control and Prevention of Major Infectious Diseases, No.2018ZX10301401+2 种基金National Postdoctoral Program for Innovative Talents, No.BX20190192China Postdoctoral Science Foundation, No.2020M672064National Basic Research Program of China, No.2013CB531503
文摘Chronic hepatitis B virus(HBV)infection is an international health problem with extremely high mortality and morbidity rates.Although current clinical chronic hepatitis B(CHB)treatment strategies can partly inhibit and eliminate HBV,viral breakthrough may result due to non-adherence to treatment,the emergence of viral resistance,and a long treatment cycle.Persistent CHB infection arises as a consequence of complex interactions between the virus and the host innate and adaptive immune systems.Therefore,understanding the immune escape mechanisms involved in persistent HBV infection is important for designing novel CHB treatment strategies to clear HBV and achieve long-lasting immune control.This review details the immunological and biological characteristics and escape mechanisms of HBV and the novel immune-based therapies that are currently used for treating HBV.