The use of artificial intelligence models in predicting the moisture content reduction in the drying of potato(Ipomoea batata)sliceswas the focus of thiswork.The models used were adaptive neuro fuzzy inference systems...The use of artificial intelligence models in predicting the moisture content reduction in the drying of potato(Ipomoea batata)sliceswas the focus of thiswork.The models used were adaptive neuro fuzzy inference systems(ANFIS),artificial neural network(ANN)and response surface methodology(RSM).The parameters considered were drying time,drying air speed and temperature.The capability and sensitivity analysis of the three models were evaluated using the correlation coefficient(R2)and some statistical error functions such as the average relative error(ARE),root mean square error(RMSE),Hybrid Fractional Error Function(HYBRID)and absolute average relative error(AARE).The result showed that the three models demonstrated significant predictive behaviourwith R2 of 0.998,0.997 and 0.998 for ANFIS,ANN and RSMrespectively.The calculated error functions of ARE(RSM=1.778,ANFIS=1.665 and ANN=4.282)and RMSE(RSM=0.0273,ANFIS=0.0282 and ANN=0.1178)suggested good harmony between the experimental and predicted values.It was concluded that though the three models gave adequate predictions that were in good agreement with the experimental data,the RSM and ANFIS gave better model prediction than ANN.展开更多
High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode...High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models.展开更多
文摘The use of artificial intelligence models in predicting the moisture content reduction in the drying of potato(Ipomoea batata)sliceswas the focus of thiswork.The models used were adaptive neuro fuzzy inference systems(ANFIS),artificial neural network(ANN)and response surface methodology(RSM).The parameters considered were drying time,drying air speed and temperature.The capability and sensitivity analysis of the three models were evaluated using the correlation coefficient(R2)and some statistical error functions such as the average relative error(ARE),root mean square error(RMSE),Hybrid Fractional Error Function(HYBRID)and absolute average relative error(AARE).The result showed that the three models demonstrated significant predictive behaviourwith R2 of 0.998,0.997 and 0.998 for ANFIS,ANN and RSMrespectively.The calculated error functions of ARE(RSM=1.778,ANFIS=1.665 and ANN=4.282)and RMSE(RSM=0.0273,ANFIS=0.0282 and ANN=0.1178)suggested good harmony between the experimental and predicted values.It was concluded that though the three models gave adequate predictions that were in good agreement with the experimental data,the RSM and ANFIS gave better model prediction than ANN.
基金supported by National Natural Science Foundation of China (Grant Nos. 50875024,51105040)Excellent Young Scholars Research Fund of Beijing Institute of Technology,China (Grant No.2010Y0102)Defense Creative Research Group Foundation of China(Grant No. GFTD0803)
文摘High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models.