基于神经网络-模糊推理(N N-FR)的数据融合方法——自适应神经网络-模糊推理信息融合系统(A N N-FRIFS),对交通中同一检测面上的多种检测器采集的数据进行融合。首先简单介绍了A N N-FR IFS,然后分析了AN FIS置信度判别器的设计,并给出...基于神经网络-模糊推理(N N-FR)的数据融合方法——自适应神经网络-模糊推理信息融合系统(A N N-FRIFS),对交通中同一检测面上的多种检测器采集的数据进行融合。首先简单介绍了A N N-FR IFS,然后分析了AN FIS置信度判别器的设计,并给出了A N N-FRIFS算法,最后结合仿真算例,验证了该方法能以较高精度对同一检测面上的多检测器进行数据融合。展开更多
基金supported in part by the National Natural Science Foundation of China(60604032, 60674001)in part by the State Key Laboratory of Rail Traffic Control and Safety of Beijing Jiaotong University(RCS2008ZZ04,SKL2007K006)+1 种基金Shandong Province Domestic Visitor Foundationin part by the the National 863 High Technology Plan of China(2007AA11Z247)
文摘基于神经网络-模糊推理(N N-FR)的数据融合方法——自适应神经网络-模糊推理信息融合系统(A N N-FRIFS),对交通中同一检测面上的多种检测器采集的数据进行融合。首先简单介绍了A N N-FR IFS,然后分析了AN FIS置信度判别器的设计,并给出了A N N-FRIFS算法,最后结合仿真算例,验证了该方法能以较高精度对同一检测面上的多检测器进行数据融合。