In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal w...In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal with the difficulties associated with input saturation. An adaptive DSC design with an auxiliary first-order filter is used to solve the "explosion of complexity"problem. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking error eventually converges to a small neighborhood around zero. The main advantage of the proposed method is that only one adaptation parameter needs to be updated,which reduces the computational burden significantly. Simulation results demonstrate the feasibility of the proposed scheme and the comparison results show that the improved DSC method can reduce the computational burden by almost two thirds in comparison with the standard DSC method.展开更多
The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link ...The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.展开更多
Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time...Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time-varying parameters. Traditional control method has some limitation. In order to help the hydraulic servo system of the quadruped robot to adapt to harsh environments, and to obtain high control quality and control precision, an incremental fuzzy adaptive PID controller based on position feedback is designed to solve the related technical problems. Matlab/Simulink sim- ulation and experimental results show that the incremental fuzzy adaptive PID controller improves the dynamic performance of the system, enhances the respond speed and precision of the hydraulic ser- vo system, and has some theory significance and practical value.展开更多
In this paper, a novel adaptive fuzzy control scheme is presented. The controller is constructed by using a table lookup scheme and self tuning techniques, which includes the identification block, the fuzzification,...In this paper, a novel adaptive fuzzy control scheme is presented. The controller is constructed by using a table lookup scheme and self tuning techniques, which includes the identification block, the fuzzification, the updating rule base, the defuzzification, and the crisp controller (sub controller), etc. The adaptive fuzzy controller is designed in detail by means of a triangular membership function and the center of gravity method. The control scheme addressed here is implemented to control the motion of the end effector of a two link constrained flexible manipulator. Computer simulation results show that the novel adaptive fuzzy control scheme works quite well.展开更多
Low-power design is one of the most important issues in wireless sensor networks (WSNs) , while reliable information transmitting should be ensured as well. Transmitting power (TP) control is a simple method to make t...Low-power design is one of the most important issues in wireless sensor networks (WSNs) , while reliable information transmitting should be ensured as well. Transmitting power (TP) control is a simple method to make the power consumption down, but excessive interferences from potential adjacent operating links and communication reliability between nodes should be considered. In this paper, a reliable and energy efficient protocol is presented, which adopts adaptive rate control based on an optimal TP. A mathematical model considering average interference and network connectivity was used to predict the optimal TP. Then for the optimal TP, active nodes adaptively chose the data rate with the change of bit-error–rate(BER) performance. The efficiency of the new strategy was validated by mathematical analysis and simulations. Compared with 802.11 DCF which uses maximum unified TP and BASIC protocol, it is shown that the higher average throughput can achieve while the energy consumption per useful bit can be reduced according to the results.展开更多
In this paper, a novel adaptive fuzzy control scheme is presented . The controller is constructed by using a table lookup scheme and self tuning techniques, which includes the identification block, the fuzzification...In this paper, a novel adaptive fuzzy control scheme is presented . The controller is constructed by using a table lookup scheme and self tuning techniques, which includes the identification block, the fuzzification, the updating rule base, the defuzzification, and the crisp controller (sub controller), etc. The adaptive fuzzy controller is designed in detail by means of triangular membership function and the center of gravity method. The control scheme addressed here is implemented to control the motion of the end effector of a two link constrained flexible manipulator. Computer simulation results show that the novel adaptive fuzzy control scheme works quite well.展开更多
基金supported in part by the National Natural Science Foundation of China (61773051,61773072,61761166011)the Fundamental Research Fund for the Central Universities (2016RC021,2017JBZ003)
文摘In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal with the difficulties associated with input saturation. An adaptive DSC design with an auxiliary first-order filter is used to solve the "explosion of complexity"problem. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking error eventually converges to a small neighborhood around zero. The main advantage of the proposed method is that only one adaptation parameter needs to be updated,which reduces the computational burden significantly. Simulation results demonstrate the feasibility of the proposed scheme and the comparison results show that the improved DSC method can reduce the computational burden by almost two thirds in comparison with the standard DSC method.
基金supported by the National Natural Science Foundation of China (9071602860974106)
文摘The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.
基金Supported by the Ministerial Level Advanced Research Foundation(65822576)
文摘Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time-varying parameters. Traditional control method has some limitation. In order to help the hydraulic servo system of the quadruped robot to adapt to harsh environments, and to obtain high control quality and control precision, an incremental fuzzy adaptive PID controller based on position feedback is designed to solve the related technical problems. Matlab/Simulink sim- ulation and experimental results show that the incremental fuzzy adaptive PID controller improves the dynamic performance of the system, enhances the respond speed and precision of the hydraulic ser- vo system, and has some theory significance and practical value.
文摘In this paper, a novel adaptive fuzzy control scheme is presented. The controller is constructed by using a table lookup scheme and self tuning techniques, which includes the identification block, the fuzzification, the updating rule base, the defuzzification, and the crisp controller (sub controller), etc. The adaptive fuzzy controller is designed in detail by means of a triangular membership function and the center of gravity method. The control scheme addressed here is implemented to control the motion of the end effector of a two link constrained flexible manipulator. Computer simulation results show that the novel adaptive fuzzy control scheme works quite well.
基金National High-Tech Research and Development (863) Program of China (No. 2006AA01Z223)
文摘Low-power design is one of the most important issues in wireless sensor networks (WSNs) , while reliable information transmitting should be ensured as well. Transmitting power (TP) control is a simple method to make the power consumption down, but excessive interferences from potential adjacent operating links and communication reliability between nodes should be considered. In this paper, a reliable and energy efficient protocol is presented, which adopts adaptive rate control based on an optimal TP. A mathematical model considering average interference and network connectivity was used to predict the optimal TP. Then for the optimal TP, active nodes adaptively chose the data rate with the change of bit-error–rate(BER) performance. The efficiency of the new strategy was validated by mathematical analysis and simulations. Compared with 802.11 DCF which uses maximum unified TP and BASIC protocol, it is shown that the higher average throughput can achieve while the energy consumption per useful bit can be reduced according to the results.
文摘In this paper, a novel adaptive fuzzy control scheme is presented . The controller is constructed by using a table lookup scheme and self tuning techniques, which includes the identification block, the fuzzification, the updating rule base, the defuzzification, and the crisp controller (sub controller), etc. The adaptive fuzzy controller is designed in detail by means of triangular membership function and the center of gravity method. The control scheme addressed here is implemented to control the motion of the end effector of a two link constrained flexible manipulator. Computer simulation results show that the novel adaptive fuzzy control scheme works quite well.