Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting in...Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-lp and tumor necrosis factor-a), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-KB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceDtibilitv to bacterial infection in oatients with cirrhosis.展开更多
A review of the systemic acute phase reaction with major cytokines involved, and the hepatic metabolic changes, negative and positive acute phase proteins (APPs) with function and associated pathology is given. It app...A review of the systemic acute phase reaction with major cytokines involved, and the hepatic metabolic changes, negative and positive acute phase proteins (APPs) with function and associated pathology is given. It appears that APPs represent appropriate analytes for assessment of animal health. Whereas they represent non-specific markers as biological effect reactants, they can be used for assessing nutritional deficits and reactive processes, especially when positive and negative acute phase variables are combined in an index. When such acute phase index is applied to separate healthy animals from animals with some disease, much better results are obtained than with single analytes and statistically acceptable results for culling individual animals may be reached. Unfortunately at present no cheap, comprehensive and easy to use system is available for assessing various acute phase proteins in serum or blood samples at the same time. Protein microarray or fluid phase microchip technology may satisfy this need; and permit simultaneous analysis of numerous analytes in the same small volume sample and enable integration of information derived from systemic reactivity and nutrition with disease specific variables. Applying such technology may help to solve health problems in various countries not only in animal husbandry but also in human populations.展开更多
文摘Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-lp and tumor necrosis factor-a), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-KB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceDtibilitv to bacterial infection in oatients with cirrhosis.
基金The paper presented at the 28th Seminar on Recent Advances inAnimal Health and Production, University Putra Malaysia, KualaLumpur, Malaysia, March 28th, 2005
文摘A review of the systemic acute phase reaction with major cytokines involved, and the hepatic metabolic changes, negative and positive acute phase proteins (APPs) with function and associated pathology is given. It appears that APPs represent appropriate analytes for assessment of animal health. Whereas they represent non-specific markers as biological effect reactants, they can be used for assessing nutritional deficits and reactive processes, especially when positive and negative acute phase variables are combined in an index. When such acute phase index is applied to separate healthy animals from animals with some disease, much better results are obtained than with single analytes and statistically acceptable results for culling individual animals may be reached. Unfortunately at present no cheap, comprehensive and easy to use system is available for assessing various acute phase proteins in serum or blood samples at the same time. Protein microarray or fluid phase microchip technology may satisfy this need; and permit simultaneous analysis of numerous analytes in the same small volume sample and enable integration of information derived from systemic reactivity and nutrition with disease specific variables. Applying such technology may help to solve health problems in various countries not only in animal husbandry but also in human populations.