Objective: In a randomized, double-blind, exploratory, active-controlled trial, the efficacy and safety of a patent-pending combination of Ginger and Goldenrod extracts (BDI-630) in alleviating cold symptoms in commun...Objective: In a randomized, double-blind, exploratory, active-controlled trial, the efficacy and safety of a patent-pending combination of Ginger and Goldenrod extracts (BDI-630) in alleviating cold symptoms in community-dwelling adults was compared to a combination of standardized amounts of Echinacea (EC) components. Methods: 44 healthy adults, experiencing new onset of cold symptoms were randomly assigned to receive either BDI-630 (900 mg) or EC (500 mg) twice daily for 10 days. The severity of cold symptoms and the quality of life was assessed by self-reporting of subjects using the Wisconsin Upper Respiratory Symptom Survey (WURSS-21? 2004). Results: The intent-to-treat population (ITT) consisted of 44 subjects (n = 22 for BDI-630;n = 22 for EC). The modified ITT (mITT) population consisted of 40 subjects, excluding four subjects with major protocol deviations related to inclusion/exclusion criteria and/or use of prohibited drugs from the efficacy analysis (n = 3 for BDI-630 and n = 1 for EC). Results indicated a sig-nificant difference between the two groups: the superiority of BDI-630 over EC was particularly noticeable between Day 1 and Day 7, as demonstrated by a 14-fold difference of the mean percentage of change of total score from baseline in the mITT population. Adverse events (AEs) following the intake of BDI-630 were mostly limited to mild gastrointestinal intolerance in less than 10% of the subjects. Conclusions: BDI-630 was shown to be more effective than EC in alleviating cold symptoms in the adult population, particularly during the first 7 days of treatment. BDI-630 was very well tolerated by all subjects.展开更多
随着因化石燃料过度消耗产生的温室效应成为了全球关注的焦点,我国正在大力推广利用太阳能等可再生清洁能源的发电技术,从而为电网的低碳运行做出贡献。其中,光伏发电的并网化和大型化必将是将来的主要发展趋势,提高光伏发电效率,增加...随着因化石燃料过度消耗产生的温室效应成为了全球关注的焦点,我国正在大力推广利用太阳能等可再生清洁能源的发电技术,从而为电网的低碳运行做出贡献。其中,光伏发电的并网化和大型化必将是将来的主要发展趋势,提高光伏发电效率,增加并网容量,都有助于发展低碳电网。由于光伏发电的随机性强,所以通过Matlab/Simulnik建造光伏电站的模型,根据真实的环境数据得出一年中的典型日光伏输出特性并进行了分析,最后提出了一种大型光伏电站的低碳调度。另一方面,随着光伏电站的容量不断增加,并网时需要考虑并解决更多的负面影响,而且要达到低碳运行的标准,这都对并网逆变器提出了更多的要求,所以提出了一种具有最大功率点跟踪(maximum power point tracking,MPPT)、无功及谐波电流补偿和有功控制相结合的大型光伏电站逆变器的多模式控制策略,并通过Matlab/Simulnik建模仿真验证了该控制策略的可行性及优点。展开更多
文摘Objective: In a randomized, double-blind, exploratory, active-controlled trial, the efficacy and safety of a patent-pending combination of Ginger and Goldenrod extracts (BDI-630) in alleviating cold symptoms in community-dwelling adults was compared to a combination of standardized amounts of Echinacea (EC) components. Methods: 44 healthy adults, experiencing new onset of cold symptoms were randomly assigned to receive either BDI-630 (900 mg) or EC (500 mg) twice daily for 10 days. The severity of cold symptoms and the quality of life was assessed by self-reporting of subjects using the Wisconsin Upper Respiratory Symptom Survey (WURSS-21? 2004). Results: The intent-to-treat population (ITT) consisted of 44 subjects (n = 22 for BDI-630;n = 22 for EC). The modified ITT (mITT) population consisted of 40 subjects, excluding four subjects with major protocol deviations related to inclusion/exclusion criteria and/or use of prohibited drugs from the efficacy analysis (n = 3 for BDI-630 and n = 1 for EC). Results indicated a sig-nificant difference between the two groups: the superiority of BDI-630 over EC was particularly noticeable between Day 1 and Day 7, as demonstrated by a 14-fold difference of the mean percentage of change of total score from baseline in the mITT population. Adverse events (AEs) following the intake of BDI-630 were mostly limited to mild gastrointestinal intolerance in less than 10% of the subjects. Conclusions: BDI-630 was shown to be more effective than EC in alleviating cold symptoms in the adult population, particularly during the first 7 days of treatment. BDI-630 was very well tolerated by all subjects.
文摘随着因化石燃料过度消耗产生的温室效应成为了全球关注的焦点,我国正在大力推广利用太阳能等可再生清洁能源的发电技术,从而为电网的低碳运行做出贡献。其中,光伏发电的并网化和大型化必将是将来的主要发展趋势,提高光伏发电效率,增加并网容量,都有助于发展低碳电网。由于光伏发电的随机性强,所以通过Matlab/Simulnik建造光伏电站的模型,根据真实的环境数据得出一年中的典型日光伏输出特性并进行了分析,最后提出了一种大型光伏电站的低碳调度。另一方面,随着光伏电站的容量不断增加,并网时需要考虑并解决更多的负面影响,而且要达到低碳运行的标准,这都对并网逆变器提出了更多的要求,所以提出了一种具有最大功率点跟踪(maximum power point tracking,MPPT)、无功及谐波电流补偿和有功控制相结合的大型光伏电站逆变器的多模式控制策略,并通过Matlab/Simulnik建模仿真验证了该控制策略的可行性及优点。