An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside di...An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside directly. This kind of structure is named "active pipe-embedded building envelope" due to dealing with the thermal energy actively inside the structure mass by circulating water. This structure not only deals with thermal energy before the external disturbance becomes cooling/heating load by using the circulating water, but also may use low-grade energy sources such as evaporative cooling, solar energy, and geothermal energy. In the meantime, this structure can also improve the indoor thermal comfort by tempering the internal wall surface temperature variation due to the thermal removal in the mass. This work further presents the thermal performance of this structure under a typical hot summer weather condition by comparing it with that of the conventional external wall/roof with numerical simulation. The results show that this pipe-embedded structure may reduce the external heat transfer significantly and reduce the internal wall surface temperature for improving thermal comfort. This work also presents the effects of the water temperature and the pipe spacing on the heat transfer of this structure. The internal surface heat transfer may reduce by about 2.6 W/mE when the water temperature reduces by 1℃ as far as a brick wall with pipes embedded inside is concerned. When the pipe spacing reduces by 50 mm, the internal wall surface heat flux can also reduce by about 2.3 W/m2.展开更多
An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended und...An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.展开更多
This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stabilit...This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stability theory, it has bene proven that the non-smooth semi-active control algorithm can achieve a finite-time stability of the vibration relative to the isolation layer of a building structure. Through numerical simulation of two buildings with different parameters subjected to the input of a seismic wave, the vibration conditions of passive control, LQR semi-active control and non-smooth semiactive control are compared and analyzed. The simulation results show that the non-smooth semi-active control algorithm has a better robustness and effectiveness in restraining the impact of earthquakes on the structure.展开更多
Three novel redox-active percec-type dendrons were synthesized by mucleophilic substitution reaction of 11-bromoundecyl ferrocene and substituted benzoate.All the resultant ferrocenyl-modified dendrons were confirmed ...Three novel redox-active percec-type dendrons were synthesized by mucleophilic substitution reaction of 11-bromoundecyl ferrocene and substituted benzoate.All the resultant ferrocenyl-modified dendrons were confirmed through FT-IR,NMR,and elemental analysis,etc.Furthermore,the thermal properties and electrochemical behavior of these dendrons were monitored with thermogravimetry analysis(TG),differential scanning calorimetry(DSC),polarized optical microscope(POM),and cyclic voltammetry(CV). Abound phase behavior and reversible electrochemical redox reaction process in the DMF solution of these dendrons was observed.展开更多
An optimal control method for seismic-excited building structures with multiple time delays is investigated in this paper. The system state equation with multiple time delays is discretized and transformed into a stan...An optimal control method for seismic-excited building structures with multiple time delays is investigated in this paper. The system state equation with multiple time delays is discretized and transformed into a standard discrete form without any explicit time delay by a particular augmenting for state variables. A time-delay controller is then designed based on this standard equation using the discrete optimal control method. Effectiveness of the proposed controller is demonstrated by numerical simulations. Simulation results indicate that a very small time delay may result in the instability of the control system if it is not compensated in the control design. Time delay may be compensated effectively by the proposed controller, in the mean time, an effective control may be obtained. The proposed controller is valid for both small and large time delays.展开更多
基金Project(51178201) supported by the National Natural Science Foundation of China Project(2011CDB292) supported by the Natural Science Foundation of Hubei Province,China
文摘An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside directly. This kind of structure is named "active pipe-embedded building envelope" due to dealing with the thermal energy actively inside the structure mass by circulating water. This structure not only deals with thermal energy before the external disturbance becomes cooling/heating load by using the circulating water, but also may use low-grade energy sources such as evaporative cooling, solar energy, and geothermal energy. In the meantime, this structure can also improve the indoor thermal comfort by tempering the internal wall surface temperature variation due to the thermal removal in the mass. This work further presents the thermal performance of this structure under a typical hot summer weather condition by comparing it with that of the conventional external wall/roof with numerical simulation. The results show that this pipe-embedded structure may reduce the external heat transfer significantly and reduce the internal wall surface temperature for improving thermal comfort. This work also presents the effects of the water temperature and the pipe spacing on the heat transfer of this structure. The internal surface heat transfer may reduce by about 2.6 W/mE when the water temperature reduces by 1℃ as far as a brick wall with pipes embedded inside is concerned. When the pipe spacing reduces by 50 mm, the internal wall surface heat flux can also reduce by about 2.3 W/m2.
基金Supported by the National Nature Foundation of China (No.59975073)
文摘An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.
基金National Natural Science Foundation(NNSF)of China under Grant No.51478132Guangzhou City College Scientific Research Project under Grant No.120163017
文摘This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stability theory, it has bene proven that the non-smooth semi-active control algorithm can achieve a finite-time stability of the vibration relative to the isolation layer of a building structure. Through numerical simulation of two buildings with different parameters subjected to the input of a seismic wave, the vibration conditions of passive control, LQR semi-active control and non-smooth semiactive control are compared and analyzed. The simulation results show that the non-smooth semi-active control algorithm has a better robustness and effectiveness in restraining the impact of earthquakes on the structure.
基金Supported in part by Ministry of Science and Technology of China(2012BAJ15B04)by Research Grants Council of Hong Kong(PolyU 15223015+2 种基金PolyU 5249/12E)by National Natural Science Foundation of China(41331175)by Leading Talent Project of the National Administration of Surveying(K.SZ.XX.VTQA)
基金The financial support from the NSFC(No.50873037)China Postdoctoral Science Foundation(No.20100470908, 201104349)the NSF of Guangdong Province(No.10451064101005118) is gratefully acknowledged
文摘Three novel redox-active percec-type dendrons were synthesized by mucleophilic substitution reaction of 11-bromoundecyl ferrocene and substituted benzoate.All the resultant ferrocenyl-modified dendrons were confirmed through FT-IR,NMR,and elemental analysis,etc.Furthermore,the thermal properties and electrochemical behavior of these dendrons were monitored with thermogravimetry analysis(TG),differential scanning calorimetry(DSC),polarized optical microscope(POM),and cyclic voltammetry(CV). Abound phase behavior and reversible electrochemical redox reaction process in the DMF solution of these dendrons was observed.
基金supported by the National Natural Science Foundation of China (Nos.10772112,10472065)the Key Project of Ministry of Education of China (No.107043)+2 种基金the Key Scientific Project of Shang-hai Municipal Education Commission (No.09ZZ17)the Specialized Research Fund for the DoctoralProgram of Higher Education of China (No.20070248032)the Research Project of State Key Laboratory of Ocean Engineering of China (No.GKZD010807)
文摘An optimal control method for seismic-excited building structures with multiple time delays is investigated in this paper. The system state equation with multiple time delays is discretized and transformed into a standard discrete form without any explicit time delay by a particular augmenting for state variables. A time-delay controller is then designed based on this standard equation using the discrete optimal control method. Effectiveness of the proposed controller is demonstrated by numerical simulations. Simulation results indicate that a very small time delay may result in the instability of the control system if it is not compensated in the control design. Time delay may be compensated effectively by the proposed controller, in the mean time, an effective control may be obtained. The proposed controller is valid for both small and large time delays.