The primary pattern of the late Cenozoic to the present tectonic deformation of China is characterized by relative movements and interactions of tectonic blocks. Active tectonic blocks are geological units that have b...The primary pattern of the late Cenozoic to the present tectonic deformation of China is characterized by relative movements and interactions of tectonic blocks. Active tectonic blocks are geological units that have been separated from each other by active tectonic zones. Boundaries between blocks are the highest gradient of differential movement. Most of tectonic activity occurs on boundaries of the blocks. Earthquakes are results of abrupt releases of accumulated strain energy that reaches the threshold of strength of the earth's crust. Boundaries of tectonic blocks are the locations of most discontinuous deformation and highest gradient of stress accumulation, thus are the most likely places for strain energy accumulation and releases, and in turn, devastating earthquakes. Almost all earthquakes of magnitude greater than 8 and 80%-90% of earthquakes of magnitude over 7 occur along boundaries of active tectonic blocks. This fact indicates that differential movements and interactions of active tectonic blocks are the primary mechanism for the occurrences of devastating earthquakes.展开更多
Based on the hypothesis of the active tectonic blocks on the Chinese continent and its adjacent regions (both the method of the DDA on a spherical surface and the GPS survey results observed from 1991 to 2001 are used...Based on the hypothesis of the active tectonic blocks on the Chinese continent and its adjacent regions (both the method of the DDA on a spherical surface and the GPS survey results observed from 1991 to 2001 are used), the movements and deformations of each active tectonic block are calculated. The calculation results show that although the movements and deformations of active tectonic blocks in the eastern region and in the western region of China are different, active tectonic blocks in the same active tectonic block region are coherent. Then, the relative velocities of the active tectonic blocks’ boundary zones are calculated, and the relationship between current crustal motion and strong seismic activities is discussed. Earthquakes ( M S≥7 0) on the Chinese continent since 1988 all occurred on boundary zones of active tectonic blocks with high slipping speed.展开更多
In this paper, a new idea that combines Quasi-Accurate Detection of gross errors (QUAD) with discontinuous deformation positive analysis, is brought forward to divide the regional active blocks. The method can improve...In this paper, a new idea that combines Quasi-Accurate Detection of gross errors (QUAD) with discontinuous deformation positive analysis, is brought forward to divide the regional active blocks. The method can improve the demarcation of active blocks for areas lacking with observation data and offer a new train of through for the complete study of the regional deformation of active blocks. In addition, using the Sichuan-Yunnan area as example, the practice process of the method is introduced briefly.展开更多
Granitoid gneisses are widespread in Precambrian metamorphic blocks of eastern segment of the Central Tianshan Tectonic Zone, and they have intrusive contact relationships with their metamorphic sedimentary country ro...Granitoid gneisses are widespread in Precambrian metamorphic blocks of eastern segment of the Central Tianshan Tectonic Zone, and they have intrusive contact relationships with their metamorphic sedimentary country rocks of Proterozoic Xingxingxia and Kawabulag groups. Zircon U-Pb ages from a granodioritic gneiss (IW11-1) and a parametamorphic schist (W05-9) are determined at the Weiya area. Euhedral prismatic zircons from the granodioritic gneiss (IW11-1) provide U-Pb isotopic discordia intercept ages of 1218±17 Ma and 426±26 Ma, respectively, and euhedral prismatic zircons from the parametamorphic schist (W05-9) display U-Pb isotopic discordia intercept ages of 1216±74 Ma and 290±15 Ma, respectively. A whole-rock Sm-Nd isotopic isochron is determined in augen granitoid gneiss samples at the Gang- gou-Kumishi area and we obtain the isochron age of 1142±120 Ma, and its ε Nd (t) = -4.3. These geochronological data suggest that these Precambrian metamorphic basement blocks within eastern segment of the Central Tianshan Tectonic Zone can be produced during 1140—1220 Ma, and occur a nearly homochronous metamorphism. Integrated to these geochronological data, Nd depleted mantle model ages (T DM ) and epsilon Nd(t) values of these granitoid gneiss samples indicate that they can derive from mixing in various scales both magmas from mantle and crust sources at a late Mesoproterozoic active continental margin tectonic environment. Similarity in geochronology, Sm-Nd isotopic geochemistry between Weiya-Xingxingxia, Pargangtag and Ganggou-Kumishi areas suggests that they could be a bigger uniform metamorphic basement block, which could be formed by the assembly of the supercontinent Rodinia and be separated by late geological processes.展开更多
文摘The primary pattern of the late Cenozoic to the present tectonic deformation of China is characterized by relative movements and interactions of tectonic blocks. Active tectonic blocks are geological units that have been separated from each other by active tectonic zones. Boundaries between blocks are the highest gradient of differential movement. Most of tectonic activity occurs on boundaries of the blocks. Earthquakes are results of abrupt releases of accumulated strain energy that reaches the threshold of strength of the earth's crust. Boundaries of tectonic blocks are the locations of most discontinuous deformation and highest gradient of stress accumulation, thus are the most likely places for strain energy accumulation and releases, and in turn, devastating earthquakes. Almost all earthquakes of magnitude greater than 8 and 80%-90% of earthquakes of magnitude over 7 occur along boundaries of active tectonic blocks. This fact indicates that differential movements and interactions of active tectonic blocks are the primary mechanism for the occurrences of devastating earthquakes.
文摘Based on the hypothesis of the active tectonic blocks on the Chinese continent and its adjacent regions (both the method of the DDA on a spherical surface and the GPS survey results observed from 1991 to 2001 are used), the movements and deformations of each active tectonic block are calculated. The calculation results show that although the movements and deformations of active tectonic blocks in the eastern region and in the western region of China are different, active tectonic blocks in the same active tectonic block region are coherent. Then, the relative velocities of the active tectonic blocks’ boundary zones are calculated, and the relationship between current crustal motion and strong seismic activities is discussed. Earthquakes ( M S≥7 0) on the Chinese continent since 1988 all occurred on boundary zones of active tectonic blocks with high slipping speed.
基金This research was sponsored by the Joint EarthquakeScience Foundation (603002) and 104011)the sub-project of the 10th"Five-Year"Key Research Program ofCEA,entitled"Variation patterns of tectonic deformation and strain accumulation state in the key areas on the Chinesecontinent".
文摘In this paper, a new idea that combines Quasi-Accurate Detection of gross errors (QUAD) with discontinuous deformation positive analysis, is brought forward to divide the regional active blocks. The method can improve the demarcation of active blocks for areas lacking with observation data and offer a new train of through for the complete study of the regional deformation of active blocks. In addition, using the Sichuan-Yunnan area as example, the practice process of the method is introduced briefly.
基金supported by the National Natural Science Foundation of China(Grant No.40072065)MSBRPC(Grant No.2001CB409804).
文摘Granitoid gneisses are widespread in Precambrian metamorphic blocks of eastern segment of the Central Tianshan Tectonic Zone, and they have intrusive contact relationships with their metamorphic sedimentary country rocks of Proterozoic Xingxingxia and Kawabulag groups. Zircon U-Pb ages from a granodioritic gneiss (IW11-1) and a parametamorphic schist (W05-9) are determined at the Weiya area. Euhedral prismatic zircons from the granodioritic gneiss (IW11-1) provide U-Pb isotopic discordia intercept ages of 1218±17 Ma and 426±26 Ma, respectively, and euhedral prismatic zircons from the parametamorphic schist (W05-9) display U-Pb isotopic discordia intercept ages of 1216±74 Ma and 290±15 Ma, respectively. A whole-rock Sm-Nd isotopic isochron is determined in augen granitoid gneiss samples at the Gang- gou-Kumishi area and we obtain the isochron age of 1142±120 Ma, and its ε Nd (t) = -4.3. These geochronological data suggest that these Precambrian metamorphic basement blocks within eastern segment of the Central Tianshan Tectonic Zone can be produced during 1140—1220 Ma, and occur a nearly homochronous metamorphism. Integrated to these geochronological data, Nd depleted mantle model ages (T DM ) and epsilon Nd(t) values of these granitoid gneiss samples indicate that they can derive from mixing in various scales both magmas from mantle and crust sources at a late Mesoproterozoic active continental margin tectonic environment. Similarity in geochronology, Sm-Nd isotopic geochemistry between Weiya-Xingxingxia, Pargangtag and Ganggou-Kumishi areas suggests that they could be a bigger uniform metamorphic basement block, which could be formed by the assembly of the supercontinent Rodinia and be separated by late geological processes.