In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spat...In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spatial smoothing(PSS) technique is used to construct a block covariance matrix, so as to decorrelate the coherency of signals. Then a signal subspace can be obtained by singular value decomposition(SVD) of the covariance matrix. Using the signal subspace, two extended signal subspaces are constructed to compensate aperture loss caused by PSS.The elevation angles can be estimated by estimation of signal parameter via rotational invariance techniques(ESPRIT) algorithm. At last, the estimated elevation angles can be used to estimate automatically paired azimuth angles. Compared with some other ESPRIT algorithms, the proposed algorithm shows higher estimation accuracy, which can be proved through the simulation results.展开更多
This work investigates the direction-of-arrival(DOA) estimation for a uniform circular acoustic Vector-Sensor Array(UCAVSA) mounted around a cylindrical baffle.The total pressure field and the total particle velocity ...This work investigates the direction-of-arrival(DOA) estimation for a uniform circular acoustic Vector-Sensor Array(UCAVSA) mounted around a cylindrical baffle.The total pressure field and the total particle velocity field near the surface of the cylindrical baffle are analyzed theoretically by applying the method of spatial Fourier transform.Then the so-called modal vector-sensor array signal processing algorithm,which is based on the decomposed wavefield representations,for the UCAVSA mounted around the cylindrical baffle is proposed.Simulation and experimental results show that the UCAVSA mounted around the cylindrical baffle has distinct advantages over the same manifold of traditional uniform circular pressure-sensor array(UCPSA).It is pointed out that the acoustic Vector-Sensor(AVS) could be used under the condition of the cylindrical baffle and that the UCAVSA mounted around the cylindrical baffle could also combine the anti-noise performance of the AVS with spatial resolution performance of array system by means of modal vector-sensor array signal processing algorithms.展开更多
The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localizat...The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localization model are put forward. The factors that influence the precision of the localization are analyzed. Considering the errors from the factors synchronously, the simulation compares the solid array with the planar array. It can be proved that the five-sensor solid array is better than the four-sensor planar array in the estimation of bearing elements.展开更多
An acoustic vector sensor can measure the components of particle velocity and the acoustic pressure at the same point simultaneously, which provides a larger array gain against the ambient noise and a higher angular r...An acoustic vector sensor can measure the components of particle velocity and the acoustic pressure at the same point simultaneously, which provides a larger array gain against the ambient noise and a higher angular resolution than the omnidirectional pressure sensor. This paper presents an experimental study of array gain for a conformal acoustic vector sensor array in a practical environment. First, the manifold vector is calculated using the real measured data so that the effects of array mismatches can be minimized. Second, an optimal beamformer with a specific spatial response on the basis of the stable directivity of the ambient noise is designed, which can effectively suppress the ambient noise. Experimental results show that this beamformer for the conformal acoustic vector sensor array provides good signal-to- noise ratio enhancement and is more advantageous than the delay-and-sum and minimum variance distortionless response beamformers.展开更多
该文研究基于声传感器阵列的单快拍气流速度估计问题。首先,根据声波在亚音速和超音速气流中的传播特性,针对特定的测量装置,建立了声传感器线性阵列的输出模型。在此基础上,提出一种稀疏协方差矩阵迭代的单快拍(Sparse Covariance Matr...该文研究基于声传感器阵列的单快拍气流速度估计问题。首先,根据声波在亚音速和超音速气流中的传播特性,针对特定的测量装置,建立了声传感器线性阵列的输出模型。在此基础上,提出一种稀疏协方差矩阵迭代的单快拍(Sparse Covariance Matrix Iteration with a Single Snapshot,SCMISS)气流速度估计算法,与其他稀疏估计方法相比,该文提出的SCMISS算法无需正则化参数选择,计算量更低,具有更强的实时性,且只需单快拍采样数据就可对亚音速和超音速气流速度进行统一估计。最后,为了评价所提算法的估计性能,推导了气流速度估计的克拉美-罗界(Cramér-Rao Bound,CRB)表达式。仿真实验验证了该算法的有效性。展开更多
基金supported by the National Natural Science Foundation of China (62261047,62066040)the Foundation of Top-notch Talents by Education Department of Guizhou Province of China (KY[2018]075)+3 种基金the Science and Technology Foundation of Guizhou Province of China (ZK[2022]557,[2020]1Y004)the Science and Technology Research Program of the Chongqing Municipal Education Commission (KJQN202200637)PhD Research Start-up Foundation of Tongren University (trxyDH1710)Tongren Science and Technology Planning Project ((2018)22)。
文摘In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spatial smoothing(PSS) technique is used to construct a block covariance matrix, so as to decorrelate the coherency of signals. Then a signal subspace can be obtained by singular value decomposition(SVD) of the covariance matrix. Using the signal subspace, two extended signal subspaces are constructed to compensate aperture loss caused by PSS.The elevation angles can be estimated by estimation of signal parameter via rotational invariance techniques(ESPRIT) algorithm. At last, the estimated elevation angles can be used to estimate automatically paired azimuth angles. Compared with some other ESPRIT algorithms, the proposed algorithm shows higher estimation accuracy, which can be proved through the simulation results.
基金supported by the Special Foundation for State Major Basic Research Program of China (Grant No. 40827003)
文摘This work investigates the direction-of-arrival(DOA) estimation for a uniform circular acoustic Vector-Sensor Array(UCAVSA) mounted around a cylindrical baffle.The total pressure field and the total particle velocity field near the surface of the cylindrical baffle are analyzed theoretically by applying the method of spatial Fourier transform.Then the so-called modal vector-sensor array signal processing algorithm,which is based on the decomposed wavefield representations,for the UCAVSA mounted around the cylindrical baffle is proposed.Simulation and experimental results show that the UCAVSA mounted around the cylindrical baffle has distinct advantages over the same manifold of traditional uniform circular pressure-sensor array(UCPSA).It is pointed out that the acoustic Vector-Sensor(AVS) could be used under the condition of the cylindrical baffle and that the UCAVSA mounted around the cylindrical baffle could also combine the anti-noise performance of the AVS with spatial resolution performance of array system by means of modal vector-sensor array signal processing algorithms.
文摘The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localization model are put forward. The factors that influence the precision of the localization are analyzed. Considering the errors from the factors synchronously, the simulation compares the solid array with the planar array. It can be proved that the five-sensor solid array is better than the four-sensor planar array in the estimation of bearing elements.
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2016M592782)the National Natural Science Foundation of China(Grant Nos.11274253 and 11604259)
文摘An acoustic vector sensor can measure the components of particle velocity and the acoustic pressure at the same point simultaneously, which provides a larger array gain against the ambient noise and a higher angular resolution than the omnidirectional pressure sensor. This paper presents an experimental study of array gain for a conformal acoustic vector sensor array in a practical environment. First, the manifold vector is calculated using the real measured data so that the effects of array mismatches can be minimized. Second, an optimal beamformer with a specific spatial response on the basis of the stable directivity of the ambient noise is designed, which can effectively suppress the ambient noise. Experimental results show that this beamformer for the conformal acoustic vector sensor array provides good signal-to- noise ratio enhancement and is more advantageous than the delay-and-sum and minimum variance distortionless response beamformers.
文摘该文研究基于声传感器阵列的单快拍气流速度估计问题。首先,根据声波在亚音速和超音速气流中的传播特性,针对特定的测量装置,建立了声传感器线性阵列的输出模型。在此基础上,提出一种稀疏协方差矩阵迭代的单快拍(Sparse Covariance Matrix Iteration with a Single Snapshot,SCMISS)气流速度估计算法,与其他稀疏估计方法相比,该文提出的SCMISS算法无需正则化参数选择,计算量更低,具有更强的实时性,且只需单快拍采样数据就可对亚音速和超音速气流速度进行统一估计。最后,为了评价所提算法的估计性能,推导了气流速度估计的克拉美-罗界(Cramér-Rao Bound,CRB)表达式。仿真实验验证了该算法的有效性。