Biochar amendments to soils may alter soil function and fertility in various ways, including through induced changes in the microbial community. We assessed microbial activity and community composition of two distinct...Biochar amendments to soils may alter soil function and fertility in various ways, including through induced changes in the microbial community. We assessed microbial activity and community composition of two distinct clayey soil types, an Aridisol from Colorado (CO) in the U.S. Central Great Plains, and an Alfisol from Virginia (VA) in the southeastern USA following the application of switchgrass (Panicum virgatum) biochar. The switchgrass biochar was applied at four levels, 0%,0, 2.5%, 5%, and 10%, approximately equivalent to biochar additions of 0, 25, 50, and 100 t ha^-1, respectively, to the soils grown with wheat (Triticum aestivum) in an eight-week growth chamber experiment. We measured wheat shoot biomass and nitrogen (N) content and soil nutrient availability and N mineralization rates, and characterized the microbial fatty acid methyl ester (FAME) profiles of the soils. Net N mineralization rates decreased in both soils in proportion to an increase in biochar levels, but the effect was more marked in the VA soil, where net N mineralization decreased from -2.1 to -38.4 mg kg^-1. The 10% biochar addition increased soil pH, electrical conductivity, Mehlich- and bicarbonate-extractable phosphorus (P), and extractable potassium (K) in both soil types. The wheat shoot biomass decreased from 17.7 to 9.1 g with incremental additions of biochar in the CO soil, but no difference was noted in plants grown in the VA soil. The FAME recovery assay indicated that the switchgrass biochar addition could introduce artifacts in analysis, so the results needed to be interpreted with caution. Non-corrected total FAME concentrations indicated a decline by 457o and 34% with 10% biochar addition in the CO and VA soils, respectively, though these differences became nonsignificant when the extraction efficiency correction factor was applied. A significant decline in the fungi:bacteria ratio was still evident upon correction in the CO soil with biochar. Switchgrass biochar had the potential to ca展开更多
Worldwide extensive use of plasticized plastics has resulted in phthalates pollution in different environment. Nitrates from industry and agriculture are also widely disseminated in the soils, natural waters and waste...Worldwide extensive use of plasticized plastics has resulted in phthalates pollution in different environment. Nitrates from industry and agriculture are also widely disseminated in the soils, natural waters and wastewaters. Dimethyl phthalate (DMP) biodegradation by activated sludge cultures under nitrate-reducing conditions was investigated. Under one optimized condition, DMP was biodegraded from 102.20 mg/L to undetectable level in 56 h under anoxic conditions and its reaction fitted well with the first-order kinetics. Using the high-performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC-MS) analysis, mono-methyl phthalate (MMP) and phthalic acid (PA) were detected as the major intermediates of DMP biodegradation. When combined with the determination of chemical oxygen demand (CODer) removal capacity and pH, DMP was found to be mineralized completely under anoxic conditions. The biodegradation pathway was proposed as DMP → MMP→ PA→…→ CO2 + H2O. The molar ratio of DMP to nitrate consumed was found to be 9.0:1, which agrees well with the theoretical stoichiometric values of DMP biodegradation by nitrate-reducing bacteria. The results of the non-linear simulation showed that the optimum pH and temperature for the degradation were 7.56 and 31.4℃, respectively.展开更多
Dissolved organic nitrogen (DON) represents a significant pool of soluble nitrogen (N) in soil ecosystems. Soil samples under three different horticultural management practices were collected from the Xiaxiyang Or...Dissolved organic nitrogen (DON) represents a significant pool of soluble nitrogen (N) in soil ecosystems. Soil samples under three different horticultural management practices were collected from the Xiaxiyang Organic Vegetable and Fruit Farm, Shanghai, China, to investigate the dynamics of N speciation during 2 months of aerobic incubation, to compare the effects of different soils on the mineralization of ^14C-labeled amino acids and peptides, and to determine which of the pathways in the decomposition and subsequent ammonification and nitrification of organic N represented a significant blockage in soil N supply. The dynamics of N speciation was found to be significantly affected by mineralization and immobilization. DON, total free amino acids, and NH^+-N were maintained at very low levels and did not accumulate, whereas NO3^--N gradually accumulated in these soils. The conversion of insoluble organic N to low-molecular-weight (LMW) DON represented a main constraint to N supply, while conversions of LMW DON to NH4^+-N and NH4^+-N to NO3^--N did not. Free amino acids and peptides were rapidly mineralized in the soils by the microbial community and consequently did not accumulate in soil. Turnover rates of the additional amino acids and peptides were soil-dependent and generally followed the order of organic soil 〉 transitional soil 〉 conventional soil. The turnover of high-molecular-weight DON was very slow and represented the major DON loss. Further studies are needed to investigate the pathways and bottlenecks of organic N degradation.展开更多
Climate change is predicted to alter global precipitation regimes.However,the response of soil carbon and nitrogen cycles and soil microorganisms to precipitation reduction is poorly understood but is dependent on eco...Climate change is predicted to alter global precipitation regimes.However,the response of soil carbon and nitrogen cycles and soil microorganisms to precipitation reduction is poorly understood but is dependent on ecosystem type.To evaluate the impacts of reduced precipitation on soil respiration,soil inorganic nitrogen(i.e.,NH4^+–N and NO3^-–N),nitrogen mineralization,and soil microbial community composition,a precipitation manipulation experiment was initiated in a Mongolian pine plantation and a naturally restored grassland in semi-arid northeast China.Precipitation reduction led to decreases of soil respiration rates by 14 and 8%in 2014 and 2015 in the Mongolian pine plantation but no changes in the grassland.Soil inorganic nitrogen,ammonification and nitrification rate,and soil phospholipids fatty acids were not significantly changed by reduced precipitation but significantly differed between the two ecosystems and among growing seasons.Our results suggest that the impacts of precipitation reduction on soil respiration were different between the Mongolian pine plantation and the grassland,and that ecosystem type and growing season had more pronounced impacts on soil carbon and nitrogen cycles.展开更多
Degradable plastics are used as a way to decrease the environmental impact of these materials when they become waste. However, they can reach natural ecosystems due to littering and bad management. This research asses...Degradable plastics are used as a way to decrease the environmental impact of these materials when they become waste. However, they can reach natural ecosystems due to littering and bad management. This research assesses the performance of oxodegradable and compostable plastics on marine environments through a respirometric lab test. Probes of the plastics, with and without previous simulated weathering, were put in contact for 48 days with a marine inoculum, in a system that guarantees continuous aeration and capture of the produced CO2. After the test, the samples were also assessed in terms of their loss of mechanical properties. The compostable plastic exhibited the higher degree of mineralization (10%), while there was no difference between the polyolefins (2.06% - 2.78%), with or without presence of pro-oxidants or previous abiotic degradation. On the other hand, exposition to UV light promoted a higher loss of elongation at break in the oxodegradables plastic (>68%). The results show that the studied plastics achieve very low biodegradation rates while presenting a higher rate of loss of physical integrity. This combination of phenomena could lead to their fragmentation before significant biodegradation can occur. The risk of microplastics formation must be prevented by avoiding the presence of the materials in marine environments, even if they have shown suitability for some waste management scenarios.展开更多
Fulvic acid(FA),typical organic matter derived from humification process in composted sludge,possesses the potential to remediate mine soils contaminated by heavy metals.To understand the cooper(Cu)immobilizing proces...Fulvic acid(FA),typical organic matter derived from humification process in composted sludge,possesses the potential to remediate mine soils contaminated by heavy metals.To understand the cooper(Cu)immobilizing process in open-pit mine soil induced by FA,changes of Cu speciation in mixture of open-pit mine soil and composted sludge was tracked over 180 days.It was observed that the organic-bound and residual fraction of Cu increased dramatically with the corresponding decrease of Fe/Mn oxide-bound Cu in the first 60 days,then the organic-bound fraction decreased to about its initial proportion during 60-120 days,while residual fraction still increased,and the proportion of residual Cu accounted for over85%and became stable after 120 days.To reveal the mechanism of FA inducing Cu fixation on Albite which is the main phase of soil primary ore,two groups of Cu adsorption experiments with and without FA were designed.With the addition of FA,the adsorption capacity of Cu by Albite increased by 1.55 times and the content of residual Cu in Albite increased by7.7 times.It was found that the Cu absorbed in smaller Albite particle induced by FA formed a secondary mineral——Chrysocolla,causing increase of residual fraction of Cu.These results revealed the mechanism:FA was absorbed on the surface of Albite after complexing with Cu ions in the solution,and then it induced Cu into the interlayer and pore channels of Albite.The Cu in the Albite was immobilized by forming Chrysocolla finally.展开更多
文摘Biochar amendments to soils may alter soil function and fertility in various ways, including through induced changes in the microbial community. We assessed microbial activity and community composition of two distinct clayey soil types, an Aridisol from Colorado (CO) in the U.S. Central Great Plains, and an Alfisol from Virginia (VA) in the southeastern USA following the application of switchgrass (Panicum virgatum) biochar. The switchgrass biochar was applied at four levels, 0%,0, 2.5%, 5%, and 10%, approximately equivalent to biochar additions of 0, 25, 50, and 100 t ha^-1, respectively, to the soils grown with wheat (Triticum aestivum) in an eight-week growth chamber experiment. We measured wheat shoot biomass and nitrogen (N) content and soil nutrient availability and N mineralization rates, and characterized the microbial fatty acid methyl ester (FAME) profiles of the soils. Net N mineralization rates decreased in both soils in proportion to an increase in biochar levels, but the effect was more marked in the VA soil, where net N mineralization decreased from -2.1 to -38.4 mg kg^-1. The 10% biochar addition increased soil pH, electrical conductivity, Mehlich- and bicarbonate-extractable phosphorus (P), and extractable potassium (K) in both soil types. The wheat shoot biomass decreased from 17.7 to 9.1 g with incremental additions of biochar in the CO soil, but no difference was noted in plants grown in the VA soil. The FAME recovery assay indicated that the switchgrass biochar addition could introduce artifacts in analysis, so the results needed to be interpreted with caution. Non-corrected total FAME concentrations indicated a decline by 457o and 34% with 10% biochar addition in the CO and VA soils, respectively, though these differences became nonsignificant when the extraction efficiency correction factor was applied. A significant decline in the fungi:bacteria ratio was still evident upon correction in the CO soil with biochar. Switchgrass biochar had the potential to ca
文摘Worldwide extensive use of plasticized plastics has resulted in phthalates pollution in different environment. Nitrates from industry and agriculture are also widely disseminated in the soils, natural waters and wastewaters. Dimethyl phthalate (DMP) biodegradation by activated sludge cultures under nitrate-reducing conditions was investigated. Under one optimized condition, DMP was biodegraded from 102.20 mg/L to undetectable level in 56 h under anoxic conditions and its reaction fitted well with the first-order kinetics. Using the high-performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC-MS) analysis, mono-methyl phthalate (MMP) and phthalic acid (PA) were detected as the major intermediates of DMP biodegradation. When combined with the determination of chemical oxygen demand (CODer) removal capacity and pH, DMP was found to be mineralized completely under anoxic conditions. The biodegradation pathway was proposed as DMP → MMP→ PA→…→ CO2 + H2O. The molar ratio of DMP to nitrate consumed was found to be 9.0:1, which agrees well with the theoretical stoichiometric values of DMP biodegradation by nitrate-reducing bacteria. The results of the non-linear simulation showed that the optimum pH and temperature for the degradation were 7.56 and 31.4℃, respectively.
基金Project supported by the National High Technology Research and Development Program (863 program) of China(No. 2006AA10A311)the National Natural Science Foundation of China (No. 40901124)the Shanghai Leading Aca-demic Discipline Program,China (No. B209)
文摘Dissolved organic nitrogen (DON) represents a significant pool of soluble nitrogen (N) in soil ecosystems. Soil samples under three different horticultural management practices were collected from the Xiaxiyang Organic Vegetable and Fruit Farm, Shanghai, China, to investigate the dynamics of N speciation during 2 months of aerobic incubation, to compare the effects of different soils on the mineralization of ^14C-labeled amino acids and peptides, and to determine which of the pathways in the decomposition and subsequent ammonification and nitrification of organic N represented a significant blockage in soil N supply. The dynamics of N speciation was found to be significantly affected by mineralization and immobilization. DON, total free amino acids, and NH^+-N were maintained at very low levels and did not accumulate, whereas NO3^--N gradually accumulated in these soils. The conversion of insoluble organic N to low-molecular-weight (LMW) DON represented a main constraint to N supply, while conversions of LMW DON to NH4^+-N and NH4^+-N to NO3^--N did not. Free amino acids and peptides were rapidly mineralized in the soils by the microbial community and consequently did not accumulate in soil. Turnover rates of the additional amino acids and peptides were soil-dependent and generally followed the order of organic soil 〉 transitional soil 〉 conventional soil. The turnover of high-molecular-weight DON was very slow and represented the major DON loss. Further studies are needed to investigate the pathways and bottlenecks of organic N degradation.
基金supported by the National Natural Science Foundation of China(No.41271318)the Open Foundation of State Key Laboratory of Soil and Sustainable Agriculture of China(Y20160022)
文摘Climate change is predicted to alter global precipitation regimes.However,the response of soil carbon and nitrogen cycles and soil microorganisms to precipitation reduction is poorly understood but is dependent on ecosystem type.To evaluate the impacts of reduced precipitation on soil respiration,soil inorganic nitrogen(i.e.,NH4^+–N and NO3^-–N),nitrogen mineralization,and soil microbial community composition,a precipitation manipulation experiment was initiated in a Mongolian pine plantation and a naturally restored grassland in semi-arid northeast China.Precipitation reduction led to decreases of soil respiration rates by 14 and 8%in 2014 and 2015 in the Mongolian pine plantation but no changes in the grassland.Soil inorganic nitrogen,ammonification and nitrification rate,and soil phospholipids fatty acids were not significantly changed by reduced precipitation but significantly differed between the two ecosystems and among growing seasons.Our results suggest that the impacts of precipitation reduction on soil respiration were different between the Mongolian pine plantation and the grassland,and that ecosystem type and growing season had more pronounced impacts on soil carbon and nitrogen cycles.
文摘Degradable plastics are used as a way to decrease the environmental impact of these materials when they become waste. However, they can reach natural ecosystems due to littering and bad management. This research assesses the performance of oxodegradable and compostable plastics on marine environments through a respirometric lab test. Probes of the plastics, with and without previous simulated weathering, were put in contact for 48 days with a marine inoculum, in a system that guarantees continuous aeration and capture of the produced CO2. After the test, the samples were also assessed in terms of their loss of mechanical properties. The compostable plastic exhibited the higher degree of mineralization (10%), while there was no difference between the polyolefins (2.06% - 2.78%), with or without presence of pro-oxidants or previous abiotic degradation. On the other hand, exposition to UV light promoted a higher loss of elongation at break in the oxodegradables plastic (>68%). The results show that the studied plastics achieve very low biodegradation rates while presenting a higher rate of loss of physical integrity. This combination of phenomena could lead to their fragmentation before significant biodegradation can occur. The risk of microplastics formation must be prevented by avoiding the presence of the materials in marine environments, even if they have shown suitability for some waste management scenarios.
基金supported by the Major Consulting Research Project of Chinese Academy of Engineering 2019-ZD-33projects from the China Three Gorges Group Co.LTD(No.2020(W)-080,No.202003065)。
文摘Fulvic acid(FA),typical organic matter derived from humification process in composted sludge,possesses the potential to remediate mine soils contaminated by heavy metals.To understand the cooper(Cu)immobilizing process in open-pit mine soil induced by FA,changes of Cu speciation in mixture of open-pit mine soil and composted sludge was tracked over 180 days.It was observed that the organic-bound and residual fraction of Cu increased dramatically with the corresponding decrease of Fe/Mn oxide-bound Cu in the first 60 days,then the organic-bound fraction decreased to about its initial proportion during 60-120 days,while residual fraction still increased,and the proportion of residual Cu accounted for over85%and became stable after 120 days.To reveal the mechanism of FA inducing Cu fixation on Albite which is the main phase of soil primary ore,two groups of Cu adsorption experiments with and without FA were designed.With the addition of FA,the adsorption capacity of Cu by Albite increased by 1.55 times and the content of residual Cu in Albite increased by7.7 times.It was found that the Cu absorbed in smaller Albite particle induced by FA formed a secondary mineral——Chrysocolla,causing increase of residual fraction of Cu.These results revealed the mechanism:FA was absorbed on the surface of Albite after complexing with Cu ions in the solution,and then it induced Cu into the interlayer and pore channels of Albite.The Cu in the Albite was immobilized by forming Chrysocolla finally.