It is imperative to choose some low cost, available and effective ameliorants to correct soil acidity in southern China for sustainable agriculture. The present investigation dealt with the possible role of industrial...It is imperative to choose some low cost, available and effective ameliorants to correct soil acidity in southern China for sustainable agriculture. The present investigation dealt with the possible role of industrial byproducts, i.e., coal fly ash (CFA), alkaline slag (AS), red mud (RM) and phosphogypsum (PG) in correcting acidity and aluminum (Al) toxicity of soils under tea plantation using an indoor incubation experiment. Results indicated that CFA, AS and RM increased soil pH, while PG decreased the pHs of an Ultisol and an Alfisol. The increment of soil pH followed the order of RM 〉 AS 〉 CFA. All the industrial byproducts invariably decreased exchangeable Al and hence increased exchangeable Ca, Mg, K and Na and effective cation exchange capacity. RM, AS and lime decreased total soluble Al, exchangeable Al and organically bound Al. Formation and retention of hydroxyl-Al polymers were the principal mechanism through which Al phytotoxicity was alleviated by application of these amendments. In addition, the heavy metal contents in the four industrial byproducts constituted a limited environmental hazard in a short time at the rates normally used in agriculture. Therefore, the short-term use of the byproducts, especially AS and RM, as amendments for soil acidity and AI toxicity in acid soils may be a potential alternative to the traditional use of mined gypsum and lime.展开更多
INTRODUCTIONOnly the liver has the great capability ofregeneration in mammal.Few hepatocytes are inthe phase of division in the normal liver of an adultmammal (including human beings),but theremaining hepatocytes can ...INTRODUCTIONOnly the liver has the great capability ofregeneration in mammal.Few hepatocytes are inthe phase of division in the normal liver of an adultmammal (including human beings),but theremaining hepatocytes can be induced to proliferatequickly by partial hepatectomy (PH),and,to somedegree,they stop dividing and re-differentiate intocells functioning as hepatocytes.This shows展开更多
Olive leaves have an antioxidant capacity, and olive leaf extract can protect the blood, spleen and hippocampus in lead-poisoned mice. However, little is known about the effects of olive leaf extract on lead-induced b...Olive leaves have an antioxidant capacity, and olive leaf extract can protect the blood, spleen and hippocampus in lead-poisoned mice. However, little is known about the effects of olive leaf extract on lead-induced brain injury. This study was designed to determine whether olive leaf extract can inhibit lead-induced brain injury, and whether this effect is associated with antioxidant capacity. First, we established a mouse model of lead poisoning by continuous intragastric administration of lead acetate for 30 days. Two hours after successful model establishment, lead-poisoned mice were given olive leaf extract at doses of 250, 500 or 1 000 mg/kg daily by intragastric administration for 50 days. Under the transmission electron microscope, olive leaf extract attenuated neuronal and capillary injury and reduced damage to organelles and the matrix around the capillaries in the frontal lobe of the cerebral cortex in the lead-poisoned mice. Olive leaf extract at a dose of 1 000 mg/kg had the greatest protective effect. Spectrophotometry showed that olive leaf extract significantly in- creased the activities of superoxide dismutase, catalase, alkaline phosphatase and acid phes- phatase, while it reduced malondialdehyde content, in a dose-dependent manner. Furthermore, immunohistochemical staining revealed that olive leaf extract dose-dependently decreased Bax protein expression in the cerebral cortex of lead-poisoned mice. Our findings indicate that olive leaf extract can inhibit lead-induced brain injury by increasing antioxidant capacity and reducing apop- tosis.展开更多
基金Supported by the International Foundation of Science(No.C/4073-1)the National"Eleventh Five Years Plan"Key Project on Science and Technology of China(Nos.2006BAD05B02 and 2009BADC6B02)
文摘It is imperative to choose some low cost, available and effective ameliorants to correct soil acidity in southern China for sustainable agriculture. The present investigation dealt with the possible role of industrial byproducts, i.e., coal fly ash (CFA), alkaline slag (AS), red mud (RM) and phosphogypsum (PG) in correcting acidity and aluminum (Al) toxicity of soils under tea plantation using an indoor incubation experiment. Results indicated that CFA, AS and RM increased soil pH, while PG decreased the pHs of an Ultisol and an Alfisol. The increment of soil pH followed the order of RM 〉 AS 〉 CFA. All the industrial byproducts invariably decreased exchangeable Al and hence increased exchangeable Ca, Mg, K and Na and effective cation exchange capacity. RM, AS and lime decreased total soluble Al, exchangeable Al and organically bound Al. Formation and retention of hydroxyl-Al polymers were the principal mechanism through which Al phytotoxicity was alleviated by application of these amendments. In addition, the heavy metal contents in the four industrial byproducts constituted a limited environmental hazard in a short time at the rates normally used in agriculture. Therefore, the short-term use of the byproducts, especially AS and RM, as amendments for soil acidity and AI toxicity in acid soils may be a potential alternative to the traditional use of mined gypsum and lime.
基金China-France Scientific end Technical Cooperation (No.1996-134)Bioengineering Key Laboratory of Henan Province
文摘INTRODUCTIONOnly the liver has the great capability ofregeneration in mammal.Few hepatocytes are inthe phase of division in the normal liver of an adultmammal (including human beings),but theremaining hepatocytes can be induced to proliferatequickly by partial hepatectomy (PH),and,to somedegree,they stop dividing and re-differentiate intocells functioning as hepatocytes.This shows
基金supported by the Natural Science Foundation of Gansu Province,No.1107RJZK243a grant from Gansu Provincial Education Committee,No.1128B-01
文摘Olive leaves have an antioxidant capacity, and olive leaf extract can protect the blood, spleen and hippocampus in lead-poisoned mice. However, little is known about the effects of olive leaf extract on lead-induced brain injury. This study was designed to determine whether olive leaf extract can inhibit lead-induced brain injury, and whether this effect is associated with antioxidant capacity. First, we established a mouse model of lead poisoning by continuous intragastric administration of lead acetate for 30 days. Two hours after successful model establishment, lead-poisoned mice were given olive leaf extract at doses of 250, 500 or 1 000 mg/kg daily by intragastric administration for 50 days. Under the transmission electron microscope, olive leaf extract attenuated neuronal and capillary injury and reduced damage to organelles and the matrix around the capillaries in the frontal lobe of the cerebral cortex in the lead-poisoned mice. Olive leaf extract at a dose of 1 000 mg/kg had the greatest protective effect. Spectrophotometry showed that olive leaf extract significantly in- creased the activities of superoxide dismutase, catalase, alkaline phosphatase and acid phes- phatase, while it reduced malondialdehyde content, in a dose-dependent manner. Furthermore, immunohistochemical staining revealed that olive leaf extract dose-dependently decreased Bax protein expression in the cerebral cortex of lead-poisoned mice. Our findings indicate that olive leaf extract can inhibit lead-induced brain injury by increasing antioxidant capacity and reducing apop- tosis.