Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms.Carotenoids are essential for plants with diverse functions in photosynthesis,photoprotection,pigmentation,phytohormone synthe...Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms.Carotenoids are essential for plants with diverse functions in photosynthesis,photoprotection,pigmentation,phytohormone synthesis,and signaling.They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants.The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation.New regulators and novel roles of carotenoid metabolites are continuously revealed.This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation.We also discuss the functional evolution of carotenoids,the agricultural and horticultural application,and some key areas for future research.展开更多
Plants produce and accumulate triacylglycerol(TAG)in their seeds as an energy reservoir to support the processes of seed germination and seedling development.Plant seed oils are vital not only for the human diet but a...Plants produce and accumulate triacylglycerol(TAG)in their seeds as an energy reservoir to support the processes of seed germination and seedling development.Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use.TAG biosynthesis consists of two major steps:de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum.The latest advances in unraveling transcriptional regulation have shed light on the molecular mechanisms of plant oil biosynthesis.We summarize recent progress in understanding the regulatory mechanisms of wellcharacterized and newly discovered transcription factors and other types of regulators that control plant fatty acid biosynthesis.The emerging picture shows that plant oil biosynthesis responds to developmental and environmental cues that stimulate a network of interacting transcriptional activators and repressors,which in turn fine-tune the spatiotemporal regulation of the pathway genes.展开更多
Transcriptional regulation is essential for balancing multiple metabolic pathways that influence oil accumulation in seeds.Thus far,the transcriptional regulatory mechanisms that govern seed oil accumulation remain la...Transcriptional regulation is essential for balancing multiple metabolic pathways that influence oil accumulation in seeds.Thus far,the transcriptional regulatory mechanisms that govern seed oil accumulation remain largely unknown.Here,we identified the transcriptional regulatory network composed of MADS-box transcription factors SEEDSTICK(STK)and SEPALLATA3(SEP3),which bridges several key genes to regulate oil accumulation in seeds.We found that STK,highly expressed in the developing embryo,positively regulates seed oil accumulation in Arabidopsis(Arabidopsis thaliana).Furthermore,we discovered that SEP3 physically interacts with STK in vivo and in vitro.Seed oil content is increased by the SEP3 mutation,while it is decreased by SEP3 overexpression.The chromatin immunoprecipitation,electrophoretic mobility shift assay,and transient dual-luciferase reporter assays showed that STK positively regulates seed oil accumulation by directly repressing the expression of MYB5,SEP3,and SEED FATTY ACID REDUCER 4(SFAR4).Moreover,genetic and molecular analyses demonstrated that STK and SEP3 antagonistically regulate seed oil production and that SEP3 weakens the binding ability of STK to MYB5,SEP3,and SFAR4.Additionally,we demonstrated that TRANSPARENT TESTA 8(TT8)and ACYL-ACYL CARRIER PROTEIN DESATURASE 3(AAD3)are direct targets of MYB5 during seed oil accumulation in Arabidopsis.Together,our findings provide the transcriptional regulatory network antagonistically orchestrated by STK and SEP3,which fine tunes oil accumulation in seeds.展开更多
基金This work was supported by Agriculture and Food Research Initiative competitive award grant no.2019-67013-29162(to LL)and 2021-67013-33841(to LL and TS)from the USDA National Institute of Food and Agriculture and USDA-ARS base fund.
文摘Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms.Carotenoids are essential for plants with diverse functions in photosynthesis,photoprotection,pigmentation,phytohormone synthesis,and signaling.They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants.The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation.New regulators and novel roles of carotenoid metabolites are continuously revealed.This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation.We also discuss the functional evolution of carotenoids,the agricultural and horticultural application,and some key areas for future research.
基金This work was supported by Ministry of Education(MOE)of Singapore Tier 1 to W.M.(RG29/20)MOE of Singapore Tier 2 to W.M.(MOE-T2EP30220-0011)+2 种基金the National Key R&D Program of China to L.Y.(2019YFC1711100)the Hubei Hongshan Laboratory Research Fund to L.G.(2021HSZD004)the HZAU-AGIS Cooperation Fund to L.G.(SZYJY2021004).
文摘Plants produce and accumulate triacylglycerol(TAG)in their seeds as an energy reservoir to support the processes of seed germination and seedling development.Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use.TAG biosynthesis consists of two major steps:de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum.The latest advances in unraveling transcriptional regulation have shed light on the molecular mechanisms of plant oil biosynthesis.We summarize recent progress in understanding the regulatory mechanisms of wellcharacterized and newly discovered transcription factors and other types of regulators that control plant fatty acid biosynthesis.The emerging picture shows that plant oil biosynthesis responds to developmental and environmental cues that stimulate a network of interacting transcriptional activators and repressors,which in turn fine-tune the spatiotemporal regulation of the pathway genes.
基金supported by the National Key Research and Development Program of China(grant no.2022YFD1200400)the National Natural Science Foundation of China(grant no.31971974),the Key Research and Development Program of Shaanxi Province(grant nos.2021LLRH-07 and 2022NY-158)+1 种基金the PhD Start-up Fund of Northwest A&F University(grant no.Z1090121052)a grant from the Yang Ling Seed Industry Innovation Center(grant no.K3031122024).
文摘Transcriptional regulation is essential for balancing multiple metabolic pathways that influence oil accumulation in seeds.Thus far,the transcriptional regulatory mechanisms that govern seed oil accumulation remain largely unknown.Here,we identified the transcriptional regulatory network composed of MADS-box transcription factors SEEDSTICK(STK)and SEPALLATA3(SEP3),which bridges several key genes to regulate oil accumulation in seeds.We found that STK,highly expressed in the developing embryo,positively regulates seed oil accumulation in Arabidopsis(Arabidopsis thaliana).Furthermore,we discovered that SEP3 physically interacts with STK in vivo and in vitro.Seed oil content is increased by the SEP3 mutation,while it is decreased by SEP3 overexpression.The chromatin immunoprecipitation,electrophoretic mobility shift assay,and transient dual-luciferase reporter assays showed that STK positively regulates seed oil accumulation by directly repressing the expression of MYB5,SEP3,and SEED FATTY ACID REDUCER 4(SFAR4).Moreover,genetic and molecular analyses demonstrated that STK and SEP3 antagonistically regulate seed oil production and that SEP3 weakens the binding ability of STK to MYB5,SEP3,and SFAR4.Additionally,we demonstrated that TRANSPARENT TESTA 8(TT8)and ACYL-ACYL CARRIER PROTEIN DESATURASE 3(AAD3)are direct targets of MYB5 during seed oil accumulation in Arabidopsis.Together,our findings provide the transcriptional regulatory network antagonistically orchestrated by STK and SEP3,which fine tunes oil accumulation in seeds.