The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendati...The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendation for the allowable strength and lifetime, which hinders the lightweight design of modern railway vehicles. In this study, to ensure the reliability and durability of a brake unit bracket, an attempt was made to integrate the nominal stress method and an advanced damage tolerance method. First, a complex bogie frame was modelled using solid elements instead of plate and beam elements. A hot spot stress region on the bracket was found under an eight-stage load spectrum obtained from the Wuhan–Guangzhou high-speed railway line. Based on the probability of foreign damage, a semi-elliptical surface crack was then assumed for residual life assessment. The results obtained by the cumulative damage and damage tolerance methods show that the brake unit bracket can operate for over 30 years. Moreover, even if a 2-mm depth crack exists, the brake unit bracket can be safely operated for more than 2.27 years, with the hope that the crack can be detected in subsequent maintenance procedures. Finally, an appropriate safety margin was suggested which provides a basis for the life prediction and durability assessment of brake unit brackets of high-speed railways.展开更多
Precision and low damage grinding of aviation optical elements can effectively improve the overall processing efficiency.The mechanism of high-speed cross scuffing of multiple abrasive particles has become an importan...Precision and low damage grinding of aviation optical elements can effectively improve the overall processing efficiency.The mechanism of high-speed cross scuffing of multiple abrasive particles has become an important factor affecting the forming quality of workpiece.Interaction of abrasive trajectory determines machined surface and subsurface morphology and damage.According to the relative motion trajectory of wear particles on the workpiece surface,a theoretical model of the trochoidal trajectory intersection angle is proposed.High-speed scratches with different cross angles are experimentally obtained to explore the interference mechanism and damage accumulation of cross scratches.The results indicate that the Crack system I and Crack system II,produced by the two cross scratches,are mainly based on the stress principle and the strength principle,respectively.An increase in the damage radius is observed with a decrease in the crossing angle.Furthermore,as the duration of the normal cutting force decomposition curve at the entrance/exit of the intersection increases,the half-peak width also increases.The accumulation of cross-scratch damage promotes the propagation of deep subsurface lateral and median cracks.In other words,damage accumulation and interference mechanism formed by the cross scratches increase the longitudinal depth and lateral length of the damage.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.11572267)Sichuan Science and Technology Program(Grant No.2017JY0216)+1 种基金Open Research Project of State Key Laboratory for Strength and Vibration of Mechanical Structures of China(Grant No.SV2016-KF-21)Open Research Project of State Key Laboratory of Traction Power of China(Grant No.2018TPL_T03)
文摘The brake unit bracket of a bogie frame is an important load-carrying component, particularly under emergency start/stop conditions. Conventional infinite/safe life approaches provide an over-conservative recommendation for the allowable strength and lifetime, which hinders the lightweight design of modern railway vehicles. In this study, to ensure the reliability and durability of a brake unit bracket, an attempt was made to integrate the nominal stress method and an advanced damage tolerance method. First, a complex bogie frame was modelled using solid elements instead of plate and beam elements. A hot spot stress region on the bracket was found under an eight-stage load spectrum obtained from the Wuhan–Guangzhou high-speed railway line. Based on the probability of foreign damage, a semi-elliptical surface crack was then assumed for residual life assessment. The results obtained by the cumulative damage and damage tolerance methods show that the brake unit bracket can operate for over 30 years. Moreover, even if a 2-mm depth crack exists, the brake unit bracket can be safely operated for more than 2.27 years, with the hope that the crack can be detected in subsequent maintenance procedures. Finally, an appropriate safety margin was suggested which provides a basis for the life prediction and durability assessment of brake unit brackets of high-speed railways.
基金supported by the National Natural Science Foundation of China(No.11242004)the Fundamental Research Funds for the Central Universities(No.13CX02091A)the Focus Technology Development Plan of the Qingdao Economic and Technological Development Zone(No.2013-1-53),China
基金supported by the National Natural Science Foundation of China(Nos.51875406 and 51805365)Natural Science Foundation of Tianjin,China(No.19JCQNJC04000)。
文摘Precision and low damage grinding of aviation optical elements can effectively improve the overall processing efficiency.The mechanism of high-speed cross scuffing of multiple abrasive particles has become an important factor affecting the forming quality of workpiece.Interaction of abrasive trajectory determines machined surface and subsurface morphology and damage.According to the relative motion trajectory of wear particles on the workpiece surface,a theoretical model of the trochoidal trajectory intersection angle is proposed.High-speed scratches with different cross angles are experimentally obtained to explore the interference mechanism and damage accumulation of cross scratches.The results indicate that the Crack system I and Crack system II,produced by the two cross scratches,are mainly based on the stress principle and the strength principle,respectively.An increase in the damage radius is observed with a decrease in the crossing angle.Furthermore,as the duration of the normal cutting force decomposition curve at the entrance/exit of the intersection increases,the half-peak width also increases.The accumulation of cross-scratch damage promotes the propagation of deep subsurface lateral and median cracks.In other words,damage accumulation and interference mechanism formed by the cross scratches increase the longitudinal depth and lateral length of the damage.