Although Successive Interference Cancellation(SIC)decoding is widely adopted in Nonorthogonal Multiple Access(NOMA)schemes for the recovery of user data at acceptable complexity,the imperfect SIC would cause Error Pro...Although Successive Interference Cancellation(SIC)decoding is widely adopted in Nonorthogonal Multiple Access(NOMA)schemes for the recovery of user data at acceptable complexity,the imperfect SIC would cause Error Propagation(EP),which can severely degrade system performance.In this work,we propose an SIC-free NOMA scheme in pulse modulation based Visible Light Communication(VLC)downlinks,including two types of users with different data rate requirements.Low bit-rate users adopt on-off keying,whereas high bit-rate ones use Multiple Pulse Position Modulation(MPPM).The soft decision decoding scheme is exploited by high bit-rate users to decode MPPM signals,which could fundamentally eliminate the detrimental effect of EP;the scheme is also easier and faster to execute compared with the conventional SIC decoding scheme.Expressions of the symbol error rate and achievable data rate for two types of users are derived.Results of the Monte Carlo simulation are provided to confirm the correctness of theoretical results.展开更多
With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the ou...With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the outdoor environment,the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efcient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things(IoTs)and green computing.In this paper,we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors.Initially,in the database development phase,Motley Kennan propagation model is used with Hough transformation to classify,detect,and assign different attenuation factors related to the types of walls.Furthermore,important parameters for system accuracy,such as,placement and geometry of Access Points(APs)in the coverage area are also considered.New algorithm for deployment of an additional AP to an already existing infrastructure is proposed by using Genetic Algorithm(GA)coupled with Enhanced Dilution of Precision(EDOP).Moreover,classication algorithm based on k-Nearest Neighbors(k-NN)is used to nd the position of a stationary or mobile user inside the given coverage area.For k-NN to provide low localization error and reduced space dimensionality,three APs are required to be selected optimally.In this paper,we have suggested an idea to select APs based on Position Vectors(PV)as an input to the localization algorithm.Deducing from our comprehensive investigations,it is revealed that the accuracy of indoor positioning system using the proposed technique unblemished the existing solutions with signicant improvements.展开更多
This paper presents a novel distributed media access control(MAC)address assignment algorithm,namely virtual grid spatial reusing(VGSR),for wireless sensor networks,which reduces the size of the MAC address efficientl...This paper presents a novel distributed media access control(MAC)address assignment algorithm,namely virtual grid spatial reusing(VGSR),for wireless sensor networks,which reduces the size of the MAC address efficiently on the basis of both the spatial reuse of MAC address and the mapping of geographical position.By adjusting the communication range of sensor nodes,VGSR algorithm can minimize the size of MAC address and meanwhile guarantee the connectivity of the sensor network.Theoretical analysis and experimental results show that VGSR algorithm is not only of low energy cost,but also scales well with the network size,with its performance superior to that of other existing algorithms.展开更多
基金supported by the National Key Research and Development Program of China(No.2017YFB0403403)the Natural Science Foundation of Guangdong Province(No.2015A030312006).
文摘Although Successive Interference Cancellation(SIC)decoding is widely adopted in Nonorthogonal Multiple Access(NOMA)schemes for the recovery of user data at acceptable complexity,the imperfect SIC would cause Error Propagation(EP),which can severely degrade system performance.In this work,we propose an SIC-free NOMA scheme in pulse modulation based Visible Light Communication(VLC)downlinks,including two types of users with different data rate requirements.Low bit-rate users adopt on-off keying,whereas high bit-rate ones use Multiple Pulse Position Modulation(MPPM).The soft decision decoding scheme is exploited by high bit-rate users to decode MPPM signals,which could fundamentally eliminate the detrimental effect of EP;the scheme is also easier and faster to execute compared with the conventional SIC decoding scheme.Expressions of the symbol error rate and achievable data rate for two types of users are derived.Results of the Monte Carlo simulation are provided to confirm the correctness of theoretical results.
基金The authors extend their appreciation to National University of Sciences and Technology for funding this work through Researchers Supporting Grant,National University of Sciences and Technology,Islamabad,Pakistan.
文摘With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the outdoor environment,the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efcient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things(IoTs)and green computing.In this paper,we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors.Initially,in the database development phase,Motley Kennan propagation model is used with Hough transformation to classify,detect,and assign different attenuation factors related to the types of walls.Furthermore,important parameters for system accuracy,such as,placement and geometry of Access Points(APs)in the coverage area are also considered.New algorithm for deployment of an additional AP to an already existing infrastructure is proposed by using Genetic Algorithm(GA)coupled with Enhanced Dilution of Precision(EDOP).Moreover,classication algorithm based on k-Nearest Neighbors(k-NN)is used to nd the position of a stationary or mobile user inside the given coverage area.For k-NN to provide low localization error and reduced space dimensionality,three APs are required to be selected optimally.In this paper,we have suggested an idea to select APs based on Position Vectors(PV)as an input to the localization algorithm.Deducing from our comprehensive investigations,it is revealed that the accuracy of indoor positioning system using the proposed technique unblemished the existing solutions with signicant improvements.
基金supported by the National Natural Science Foundation of China(Grant Nos.60572146,60372048 and 60496316).
文摘This paper presents a novel distributed media access control(MAC)address assignment algorithm,namely virtual grid spatial reusing(VGSR),for wireless sensor networks,which reduces the size of the MAC address efficiently on the basis of both the spatial reuse of MAC address and the mapping of geographical position.By adjusting the communication range of sensor nodes,VGSR algorithm can minimize the size of MAC address and meanwhile guarantee the connectivity of the sensor network.Theoretical analysis and experimental results show that VGSR algorithm is not only of low energy cost,but also scales well with the network size,with its performance superior to that of other existing algorithms.