A method with which one can calculate the entropy of a non-stationary and non-spherically symmetric black hole is suggested. This method is universal to every kind of black holes. By means of thin film model, the entr...A method with which one can calculate the entropy of a non-stationary and non-spherically symmetric black hole is suggested. This method is universal to every kind of black holes. By means of thin film model, the entropy density at every point of the event horizon is calculated first, then the total entropy is obtained through integration.展开更多
In this paper, we construct rotating charged hairy black hole in(2+1) dimensions for infinitesimal black hole charge and rotation parameters. Then we consider this black hole as particle accelerator and calculate the ...In this paper, we construct rotating charged hairy black hole in(2+1) dimensions for infinitesimal black hole charge and rotation parameters. Then we consider this black hole as particle accelerator and calculate the centerof-mass energy of two colliding test particles near the rotating charged hairy black hole in(2+1) dimensions. As we expected, the center-of-mass energy has infinite value.展开更多
It has recently been pointed out that, under certain conditions, the energy of particles accelerated by black holes in the center-of-mass frame can become arbitrarily high. In this paper, we study the collision of two...It has recently been pointed out that, under certain conditions, the energy of particles accelerated by black holes in the center-of-mass frame can become arbitrarily high. In this paper, we study the collision of two particles in the case of four-dimensional charged nonrotating, extremal charged rotating and near-extremal charged rotating Kaluza-Klein black holes as well as the naked singularity case in Einstein-Maxwell-dilaton theory. We find that the center-of-mass energy for a pair of colliding particles is unlimited at the horizon of charged nonrotating Kaluza-Klein black holes, extremal charged rotating Kaluza-Klein black holes and in the naked singularity case.展开更多
We utilize homology and co-homology of a K3-Kähler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) or...We utilize homology and co-homology of a K3-Kähler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) ordinary energy;2) pure dark energy and 3) dark matter. In addition, the fundamental coupling of dark matter to pure dark energy is analyzed in detail for the first time. Finally, the so-obtained results are shown to be in astounding agreement with all previous theoretical analysis as well as with actual accurate cosmic measurements.展开更多
The primary energy spectrum of cosmic rays exhibits a knee at about 3 PeV where a change in the spectral index occurs. Despite many efforts, the origin of such a feature in the spectrum is not satisfactorily solved ye...The primary energy spectrum of cosmic rays exhibits a knee at about 3 PeV where a change in the spectral index occurs. Despite many efforts, the origin of such a feature in the spectrum is not satisfactorily solved yet. Here it is proposed that the steepening of the spectrum beyond the knee may be a consequence of the mass distribution of the progenitor of the cosmic ray source. The proposed speculative model can account for all the major observed features of cosmic rays without invoking any fine tuning to match flux or spectra at any energy point. The prediction of the proposed model regarding the primary composition scenario beyond the knee is quite different from most of the prevailing models of the knee, and thereby can be discriminated from precise experimental measurement of the primary composition.展开更多
文摘A method with which one can calculate the entropy of a non-stationary and non-spherically symmetric black hole is suggested. This method is universal to every kind of black holes. By means of thin film model, the entropy density at every point of the event horizon is calculated first, then the total entropy is obtained through integration.
文摘In this paper, we construct rotating charged hairy black hole in(2+1) dimensions for infinitesimal black hole charge and rotation parameters. Then we consider this black hole as particle accelerator and calculate the centerof-mass energy of two colliding test particles near the rotating charged hairy black hole in(2+1) dimensions. As we expected, the center-of-mass energy has infinite value.
基金Supported by NSFC(11575202,11205048)Foundation for Young Key Teacher of Henan Normal University+1 种基金Cuiying Programme of Lanzhou University(225000-582404)Fundamental Research Fund for Physics and Mathematic of Lanzhou University(LZULL200911)
文摘It has recently been pointed out that, under certain conditions, the energy of particles accelerated by black holes in the center-of-mass frame can become arbitrarily high. In this paper, we study the collision of two particles in the case of four-dimensional charged nonrotating, extremal charged rotating and near-extremal charged rotating Kaluza-Klein black holes as well as the naked singularity case in Einstein-Maxwell-dilaton theory. We find that the center-of-mass energy for a pair of colliding particles is unlimited at the horizon of charged nonrotating Kaluza-Klein black holes, extremal charged rotating Kaluza-Klein black holes and in the naked singularity case.
文摘We utilize homology and co-homology of a K3-Kähler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) ordinary energy;2) pure dark energy and 3) dark matter. In addition, the fundamental coupling of dark matter to pure dark energy is analyzed in detail for the first time. Finally, the so-obtained results are shown to be in astounding agreement with all previous theoretical analysis as well as with actual accurate cosmic measurements.
基金partly supported by the Department of Science and Technology (Govt.of India) under the grant no.SR/S2/HEP-14/2007
文摘The primary energy spectrum of cosmic rays exhibits a knee at about 3 PeV where a change in the spectral index occurs. Despite many efforts, the origin of such a feature in the spectrum is not satisfactorily solved yet. Here it is proposed that the steepening of the spectrum beyond the knee may be a consequence of the mass distribution of the progenitor of the cosmic ray source. The proposed speculative model can account for all the major observed features of cosmic rays without invoking any fine tuning to match flux or spectra at any energy point. The prediction of the proposed model regarding the primary composition scenario beyond the knee is quite different from most of the prevailing models of the knee, and thereby can be discriminated from precise experimental measurement of the primary composition.