We present a recent progress of the SG-II 5 PW facility, which designed a multi-petawatt ultrashort pulse laser based on optical parametric chirped-pulse amplification(OPCPA). The prior two optical parametric amplifie...We present a recent progress of the SG-II 5 PW facility, which designed a multi-petawatt ultrashort pulse laser based on optical parametric chirped-pulse amplification(OPCPA). The prior two optical parametric amplifiers have been accomplished and chirped pulses with an energy of 49.7 J and a full-width-at-half-maximum(FWHM) spectrum bandwidth of 85 nm have been achieved. In the PW-scale optical parametric amplification(OPA), with the pump pulse that has an energy of 118 J from the second harmonic generation of the SG-II 7 th beam, the pump-to-signal conversion efficiency is up to 41.9%, which to the best of our knowledge is the highest among all of the reported values for OPCPA systems. The compressed pulse is higher than 37 J in 21 fs(1.76 PW), and the focal spot is ~10 μm after the closed-loop corrections by the adaptive optics. Limited by the repetition of the pump laser, the SG-II 5 PW facility operates one shot per hour. It has successfully been employed for high energy physics experiments.展开更多
In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposi...In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing) and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering structures as well as placing very high deformation demands on long-period structures.展开更多
Major earthquakes of last 15 years (e.g., Northridge 1994, Kobe 1995 and Chi-Chi 1999) have shown that many near-fault ground motions possess prominent acceleration pulses. Some of the prominent ground acceleration ...Major earthquakes of last 15 years (e.g., Northridge 1994, Kobe 1995 and Chi-Chi 1999) have shown that many near-fault ground motions possess prominent acceleration pulses. Some of the prominent ground acceleration pulses are related to large ground velocity pulses, others are caused by mechanisms that are totally different from those causing the velocity pulses or fling steps. Various efforts to model acceleration pulses have been reported in the literature. In this paper, research results from a recent study of acceleration pulse prominent ground motions and an analysis of structural damage induced by acceleration pulses are summarized. The main results of the study include: (1) temporal characteristics of acceleration pulses; (2) ductility demand spectrum of simple acceleration pulses with respect to equivalent classes of dynamic systems and pulse characteristic parameters; and (3) estimation of fundamental period change under the excitation of strong acceleration pulses. By using the acceleration pulse induced linear acceleration spectrum and the ductility demand spectrum, a simple procedure has been developed to estimate the ductility demand and the fundamental period change of a reinforced concrete (RC) structure under the impact of a strong acceleration pulse.展开更多
In this report, two nontraditional mechanical wave-related issues are addressed. 1) Customary, for practical reasons the characteristics of the sinusoidal pulses progressing at a constant speed only is considered. And...In this report, two nontraditional mechanical wave-related issues are addressed. 1) Customary, for practical reasons the characteristics of the sinusoidal pulses progressing at a constant speed only is considered. And 2) the literature search shows that there has been no interest in exploring the characteristics of the pulses in a curvilinear two-dimensional space. By relaxing the first restriction we consider a scenario that which a mechanical pulse progresses with variable speed, specifically at a constant acceleration. We develop its equation of motion conducive to a homogenous linear partial differential equation with variable coefficients then we apply it to a practical problem. To address the 2nd point we depict a circular orbital embodying two Gaussian pulses circulating in opposite directions. Utilizing a Computer Algebra System (CAS), Mathematica, we develop animations visually easing the comprehension of the issues on hand.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.11304332,11704392,and 61705245)the Key Projects of International Cooperation in Chinese Academy of Sciences
文摘We present a recent progress of the SG-II 5 PW facility, which designed a multi-petawatt ultrashort pulse laser based on optical parametric chirped-pulse amplification(OPCPA). The prior two optical parametric amplifiers have been accomplished and chirped pulses with an energy of 49.7 J and a full-width-at-half-maximum(FWHM) spectrum bandwidth of 85 nm have been achieved. In the PW-scale optical parametric amplification(OPA), with the pump pulse that has an energy of 118 J from the second harmonic generation of the SG-II 7 th beam, the pump-to-signal conversion efficiency is up to 41.9%, which to the best of our knowledge is the highest among all of the reported values for OPCPA systems. The compressed pulse is higher than 37 J in 21 fs(1.76 PW), and the focal spot is ~10 μm after the closed-loop corrections by the adaptive optics. Limited by the repetition of the pump laser, the SG-II 5 PW facility operates one shot per hour. It has successfully been employed for high energy physics experiments.
基金Natural Science Foundation of China Under Grant No. 50278090
文摘In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing) and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering structures as well as placing very high deformation demands on long-period structures.
基金U.S. National Science Foundation Under Grant CMS-0202846
文摘Major earthquakes of last 15 years (e.g., Northridge 1994, Kobe 1995 and Chi-Chi 1999) have shown that many near-fault ground motions possess prominent acceleration pulses. Some of the prominent ground acceleration pulses are related to large ground velocity pulses, others are caused by mechanisms that are totally different from those causing the velocity pulses or fling steps. Various efforts to model acceleration pulses have been reported in the literature. In this paper, research results from a recent study of acceleration pulse prominent ground motions and an analysis of structural damage induced by acceleration pulses are summarized. The main results of the study include: (1) temporal characteristics of acceleration pulses; (2) ductility demand spectrum of simple acceleration pulses with respect to equivalent classes of dynamic systems and pulse characteristic parameters; and (3) estimation of fundamental period change under the excitation of strong acceleration pulses. By using the acceleration pulse induced linear acceleration spectrum and the ductility demand spectrum, a simple procedure has been developed to estimate the ductility demand and the fundamental period change of a reinforced concrete (RC) structure under the impact of a strong acceleration pulse.
文摘In this report, two nontraditional mechanical wave-related issues are addressed. 1) Customary, for practical reasons the characteristics of the sinusoidal pulses progressing at a constant speed only is considered. And 2) the literature search shows that there has been no interest in exploring the characteristics of the pulses in a curvilinear two-dimensional space. By relaxing the first restriction we consider a scenario that which a mechanical pulse progresses with variable speed, specifically at a constant acceleration. We develop its equation of motion conducive to a homogenous linear partial differential equation with variable coefficients then we apply it to a practical problem. To address the 2nd point we depict a circular orbital embodying two Gaussian pulses circulating in opposite directions. Utilizing a Computer Algebra System (CAS), Mathematica, we develop animations visually easing the comprehension of the issues on hand.