Cancer is a major societal public health and economic problem, responsible for one in every six deaths. Radiotherapy is the main technique of treatment for more than half of cancer patients. To achieve a successful ou...Cancer is a major societal public health and economic problem, responsible for one in every six deaths. Radiotherapy is the main technique of treatment for more than half of cancer patients. To achieve a successful outcome, the radiation dose must be delivered accurately and precisely to the tumor, within ± 5% accuracy. Smaller uncertainties are required for better treatment outcome. The objective of the study is to investigate the uncertainty of measurement of external radiotherapy beam using a standard ionization chamber under reference conditions. Clinical farmers type ionization chamber measurement was compared against the National Reference standard, by exposing it in a beam 60Co gamma source. The measurement set up was carried out according to IAEA TRS 498 protocol and uncertainty of measurement evaluated according to GUM TEDDOC-1585. Evaluation and analysis were done for the identified subjects of uncertainty contributors. The expanded uncertainty associated with 56 mGy/nC ND,W was found to be 0.9% corresponding to a confidence level of approximately 95% with a coverage factor of k = 2. The study established the impact of dosimetry uncertainty of measurement in estimating external radiotherapy dose. The investigation established that the largest contributor of uncertainty is the stability of the ionization chamber at 36%, followed by temperature at 22% and positioning of the chamber in the beam at 8%. The effect of pressure, electrometer, resolution, and reproducibility were found to be minimal to the overall uncertainty. The study indicate that there is no flawless measurement, as there are many prospective sources of variation. Measurement results have component of unreliability and should be regarded as best estimates of the true value. .展开更多
Radiotherapy is the most widely applied oncologic treatment modality utilizing ionizing radiation. A high degree of accuracy, reliability and reproducibility is required for a successful treatment outcome. Measurement...Radiotherapy is the most widely applied oncologic treatment modality utilizing ionizing radiation. A high degree of accuracy, reliability and reproducibility is required for a successful treatment outcome. Measurement using ionization chamber is a prerequisite for absorbed dose determination for external beam radiotherapy. Calibration coefficient is expressed in terms of air kerma and absorbed dose to water traceable to Secondary Standards Dosimetry Laboratory. The objective of this work was to evaluate the level of accuracy of ionization chamber used for clinical radiotherapy beam determination. Measurement and accuracy determination were carried out according to IAEA TRS 398 protocol. Clinical farmers type ionization chamber measurement and National Reference standard from Secondary Standards Dosimetry Laboratory were both exposed to cobalt-60 beam and measurement results compared under the same environmental conditions. The accuracy level between National Reference Standard and clinical radiotherapy standard was found to be −1.92% and −2.02% for air kerma and absorbed dose to water respectively. To minimize the effect of error and maximize therapeutic dose during treatment in order to achieve required clinical outcome, calibration factor was determined for air kerma (Nk) as 49.7 mGy/nC and absorbed dose to water ND, as 52.9 mGy/nC. The study established that radiotherapy beam measurement chain is prone to errors. Hence there is a need to independently verify the accuracy of radiation dose to ensure precision of dose delivery. The errors must be accounted for during clinical planning by factoring in calibration factor to minimize the systematic errors during treatment, and thereby providing enough room to achieve ±5% dose delivery to tumor target as recommended by ICRU.展开更多
目前国内大多数放射治疗剂量只能溯源到^(60)Co γ射线空气比释动能,与溯源至空气比释动能相比,将放射治疗剂量直接溯源至水吸收剂量的不确定度要小很多。为了解决^(60)Co γ射线水吸收剂量量值溯源与传递问题,进一步提升^(60)Co γ射...目前国内大多数放射治疗剂量只能溯源到^(60)Co γ射线空气比释动能,与溯源至空气比释动能相比,将放射治疗剂量直接溯源至水吸收剂量的不确定度要小很多。为了解决^(60)Co γ射线水吸收剂量量值溯源与传递问题,进一步提升^(60)Co γ射线水吸收剂量的量值溯源与传递能力,中国测试技术研究院(National Institute of Measurement and Testing Technology,NIMTT)采用水量热法建立了^(60)Co γ射线水吸收剂量绝对测量装置,实现了水吸收剂量的绝对测量,复现了^(60)Co γ射线水吸收剂量,其量值复现的相对标准不确定度为0.45%。为了进一步验证^(60)Co γ射线水吸收剂量复现结果的准确性与一致性,将NIMTT实验室与加拿大国家研究委员会(National Research Council,NRC)实验室的复现结果进行了实验室之间的比对,结果在相对标准不确定度0.71%以内呈现一致性,归一化误差En值为-0.45。表明NIMTT具有^(60)Co γ射线水吸收剂量量值溯源与传递的能力,本研究结果也为^(60)Co γ射线吸收剂量的绝对测量提供了参考。展开更多
The practice of using the direct ionization radiation (electrons, protons, antiprotons, pions, ions, etc) or of the indirect ionization radiation (photons, neutrons, etc) in economy and social life has led to the intr...The practice of using the direct ionization radiation (electrons, protons, antiprotons, pions, ions, etc) or of the indirect ionization radiation (photons, neutrons, etc) in economy and social life has led to the introduction of the absorbed dose magnitude (ICRU 1953) defined as the energy absorbed per mass unit of the irradiated substance. This is a fundamental magnitude valid for any type of ionizing radiation, any irradiated material and any radiation energy. In case of clinical hadron beams generated by conventional accelerators or those controlled by lasers, IAEA TRS 398 recommends the absorbed dose to water. This may be determined employing the calorimeter method with water or graphite, chemical method, fluence based measurements as Faraday cups or activation measurements, and the ionization chamber method. In this paper the selected method was the thimble air filled ionization chamber method for determination of absorbed dose to water.展开更多
文摘Cancer is a major societal public health and economic problem, responsible for one in every six deaths. Radiotherapy is the main technique of treatment for more than half of cancer patients. To achieve a successful outcome, the radiation dose must be delivered accurately and precisely to the tumor, within ± 5% accuracy. Smaller uncertainties are required for better treatment outcome. The objective of the study is to investigate the uncertainty of measurement of external radiotherapy beam using a standard ionization chamber under reference conditions. Clinical farmers type ionization chamber measurement was compared against the National Reference standard, by exposing it in a beam 60Co gamma source. The measurement set up was carried out according to IAEA TRS 498 protocol and uncertainty of measurement evaluated according to GUM TEDDOC-1585. Evaluation and analysis were done for the identified subjects of uncertainty contributors. The expanded uncertainty associated with 56 mGy/nC ND,W was found to be 0.9% corresponding to a confidence level of approximately 95% with a coverage factor of k = 2. The study established the impact of dosimetry uncertainty of measurement in estimating external radiotherapy dose. The investigation established that the largest contributor of uncertainty is the stability of the ionization chamber at 36%, followed by temperature at 22% and positioning of the chamber in the beam at 8%. The effect of pressure, electrometer, resolution, and reproducibility were found to be minimal to the overall uncertainty. The study indicate that there is no flawless measurement, as there are many prospective sources of variation. Measurement results have component of unreliability and should be regarded as best estimates of the true value. .
文摘Radiotherapy is the most widely applied oncologic treatment modality utilizing ionizing radiation. A high degree of accuracy, reliability and reproducibility is required for a successful treatment outcome. Measurement using ionization chamber is a prerequisite for absorbed dose determination for external beam radiotherapy. Calibration coefficient is expressed in terms of air kerma and absorbed dose to water traceable to Secondary Standards Dosimetry Laboratory. The objective of this work was to evaluate the level of accuracy of ionization chamber used for clinical radiotherapy beam determination. Measurement and accuracy determination were carried out according to IAEA TRS 398 protocol. Clinical farmers type ionization chamber measurement and National Reference standard from Secondary Standards Dosimetry Laboratory were both exposed to cobalt-60 beam and measurement results compared under the same environmental conditions. The accuracy level between National Reference Standard and clinical radiotherapy standard was found to be −1.92% and −2.02% for air kerma and absorbed dose to water respectively. To minimize the effect of error and maximize therapeutic dose during treatment in order to achieve required clinical outcome, calibration factor was determined for air kerma (Nk) as 49.7 mGy/nC and absorbed dose to water ND, as 52.9 mGy/nC. The study established that radiotherapy beam measurement chain is prone to errors. Hence there is a need to independently verify the accuracy of radiation dose to ensure precision of dose delivery. The errors must be accounted for during clinical planning by factoring in calibration factor to minimize the systematic errors during treatment, and thereby providing enough room to achieve ±5% dose delivery to tumor target as recommended by ICRU.
文摘目前国内大多数放射治疗剂量只能溯源到^(60)Co γ射线空气比释动能,与溯源至空气比释动能相比,将放射治疗剂量直接溯源至水吸收剂量的不确定度要小很多。为了解决^(60)Co γ射线水吸收剂量量值溯源与传递问题,进一步提升^(60)Co γ射线水吸收剂量的量值溯源与传递能力,中国测试技术研究院(National Institute of Measurement and Testing Technology,NIMTT)采用水量热法建立了^(60)Co γ射线水吸收剂量绝对测量装置,实现了水吸收剂量的绝对测量,复现了^(60)Co γ射线水吸收剂量,其量值复现的相对标准不确定度为0.45%。为了进一步验证^(60)Co γ射线水吸收剂量复现结果的准确性与一致性,将NIMTT实验室与加拿大国家研究委员会(National Research Council,NRC)实验室的复现结果进行了实验室之间的比对,结果在相对标准不确定度0.71%以内呈现一致性,归一化误差En值为-0.45。表明NIMTT具有^(60)Co γ射线水吸收剂量量值溯源与传递的能力,本研究结果也为^(60)Co γ射线吸收剂量的绝对测量提供了参考。
文摘The practice of using the direct ionization radiation (electrons, protons, antiprotons, pions, ions, etc) or of the indirect ionization radiation (photons, neutrons, etc) in economy and social life has led to the introduction of the absorbed dose magnitude (ICRU 1953) defined as the energy absorbed per mass unit of the irradiated substance. This is a fundamental magnitude valid for any type of ionizing radiation, any irradiated material and any radiation energy. In case of clinical hadron beams generated by conventional accelerators or those controlled by lasers, IAEA TRS 398 recommends the absorbed dose to water. This may be determined employing the calorimeter method with water or graphite, chemical method, fluence based measurements as Faraday cups or activation measurements, and the ionization chamber method. In this paper the selected method was the thimble air filled ionization chamber method for determination of absorbed dose to water.