Censored regression ("Tobit") models have been in common use, and their linear hypothesis testings have been widely studied. However, the critical values of these tests are usually related to quantities of a...Censored regression ("Tobit") models have been in common use, and their linear hypothesis testings have been widely studied. However, the critical values of these tests are usually related to quantities of an unknown error distribution and estimators of nuisance parameters. In this paper, we propose a randomly weighting test statistic and take its conditional distribution as an approximation to null distribution of the test statistic. It is shown that, under both the null and local alternative hypotheses, conditionally asymptotic distribution of the randomly weighting test statistic is the same as the null distribution of the test statistic. Therefore, the critical values of the test statistic can be obtained by randomly weighting method without estimating the nuisance parameters. At the same time, we also achieve the weak consistency and asymptotic normality of the randomly weighting least absolute deviation estimate in censored regression model. Simulation studies illustrate that the per-formance of our proposed resampling test method is better than that of central chi-square distribution under the null hypothesis.展开更多
We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon- cave regul...We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon- cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of o(√n), where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.展开更多
A new prediction method based on the nonlinear autoregressive model is proposed to improve the accuracy of medium-term and long-term predictions of Satellite Clock Bias(SCB).Forecast experiments for three time periods...A new prediction method based on the nonlinear autoregressive model is proposed to improve the accuracy of medium-term and long-term predictions of Satellite Clock Bias(SCB).Forecast experiments for three time periods were implemented based on the precision SCB published on the International GNSS Server(IGS)server.The results show that the medium-term and long-term prediction accuracy of the proposed approach is significantly better compared to other traditional models,with the training time being much shorter than the wavelet neural network model.展开更多
The current study proposes a novel technique for feature selection by inculcating robustness in the conventional Signal to noise Ratio(SNR).The proposed method utilizes the robust measures of location i.e.,the“Median...The current study proposes a novel technique for feature selection by inculcating robustness in the conventional Signal to noise Ratio(SNR).The proposed method utilizes the robust measures of location i.e.,the“Median”as well as the measures of variation i.e.,“Median absolute deviation(MAD)and Interquartile range(IQR)”in the SNR.By this way,two independent robust signal-to-noise ratios have been proposed.The proposed method selects the most informative genes/features by combining the minimum subset of genes or features obtained via the greedy search approach with top-ranked genes selected through the robust signal-to-noise ratio(RSNR).The results obtained via the proposed method are compared with wellknown gene/feature selection methods on the basis of performance metric i.e.,classification error rate.A total of 5 gene expression datasets have been used in this study.Different subsets of informative genes are selected by the proposed and all the other methods included in the study,and their efficacy in terms of classification is investigated by using the classifier models such as support vector machine(SVM),Random forest(RF)and k-nearest neighbors(k-NN).The results of the analysis reveal that the proposed method(RSNR)produces minimum error rates than all the other competing feature selection methods in majority of the cases.For further assessment of the method,a detailed simulation study is also conducted.展开更多
Intrusion detection is critical to guaranteeing the safety of the data in the network.Even though,since Internet commerce has grown at a breakneck pace,network traffic kinds are rising daily,and network behavior chara...Intrusion detection is critical to guaranteeing the safety of the data in the network.Even though,since Internet commerce has grown at a breakneck pace,network traffic kinds are rising daily,and network behavior characteristics are becoming increasingly complicated,posing significant hurdles to intrusion detection.The challenges in terms of false positives,false negatives,low detection accuracy,high running time,adversarial attacks,uncertain attacks,etc.lead to insecure Intrusion Detection System(IDS).To offset the existing challenge,the work has developed a secure Data Mining Intrusion detection system(DataMIDS)framework using Functional Perturbation(FP)feature selection and Bengio Nesterov Momentum-based Tuned Generative Adversarial Network(BNM-tGAN)attack detection technique.The data mining-based framework provides shallow learning of features and emphasizes feature engineering as well as selection.Initially,the IDS data are analyzed for missing values based on the Marginal Likelihood Fisher Information Matrix technique(MLFIMT)that identifies the relationship among the missing values and attack classes.Based on the analysis,the missing values are classified as Missing Completely at Random(MCAR),Missing at random(MAR),Missing Not at Random(MNAR),and handled according to the types.Thereafter,categorical features are handled followed by feature scaling using Absolute Median Division based Robust Scalar(AMDRS)and the Handling of the imbalanced dataset.The selection of relevant features is initiated using FP that uses‘3’Feature Selection(FS)techniques i.e.,Inverse Chi Square based Flamingo Search(ICS-FSO)wrapper method,Hyperparameter Tuned Threshold based Decision Tree(HpTT-DT)embedded method,and Xavier Normal Distribution based Relief(XavND-Relief)filter method.Finally,the selected features are trained and tested for detecting attacks using BNM-tGAN.The Experimental analysis demonstrates that the introduced DataMIDS framework produces an accurate diagnosis about the attack with low computation time.The work av展开更多
无线传感器网络存在易遭受恶意节点攻击而导致能量浪费和数据丢失等问题,为解决该问题,提出ETM-LEACH(energy and trust models based LEACH)算法。通过均衡网络能耗计算动态最优簇首数,引入能量判决因子、节点密度因子、节点信任因子...无线传感器网络存在易遭受恶意节点攻击而导致能量浪费和数据丢失等问题,为解决该问题,提出ETM-LEACH(energy and trust models based LEACH)算法。通过均衡网络能耗计算动态最优簇首数,引入能量判决因子、节点密度因子、节点信任因子改进选举簇首的阈值计算公式。加入绝对偏差过滤掉能量较低节点,采用信任模型引入多种状态信息计算直接信任值和间接信任值,筛选高可信节点。仿真结果表明,与现有协议相比,该协议能够有效降低节点能耗,优化网络部署,提高网络的安全性和可靠性。展开更多
基金supported by National Natural Science Foundation of China (Grant No. 10471136)PhD Program Foundation of the Ministry of Education of ChinaSpecial Foundations of the Chinese Academy of Sciences and University of Science and Technology of China
文摘Censored regression ("Tobit") models have been in common use, and their linear hypothesis testings have been widely studied. However, the critical values of these tests are usually related to quantities of an unknown error distribution and estimators of nuisance parameters. In this paper, we propose a randomly weighting test statistic and take its conditional distribution as an approximation to null distribution of the test statistic. It is shown that, under both the null and local alternative hypotheses, conditionally asymptotic distribution of the randomly weighting test statistic is the same as the null distribution of the test statistic. Therefore, the critical values of the test statistic can be obtained by randomly weighting method without estimating the nuisance parameters. At the same time, we also achieve the weak consistency and asymptotic normality of the randomly weighting least absolute deviation estimate in censored regression model. Simulation studies illustrate that the per-formance of our proposed resampling test method is better than that of central chi-square distribution under the null hypothesis.
基金supported by National Institute on Drug Abuse(Grant Nos.R21-DA024260 and P50-DA10075)National Natural Science Foundation of China(Grant Nos.11071077,11371236,11028103,11071022 and 11028103)+2 种基金Innovation Program of Shanghai Municipal Education CommissionPujiang Project of Science and Technology Commission of Shanghai Municipality(Grant No.12PJ1403200)Program for New Century Excellent Talents,Ministry of Education of China(Grant No.NCET-12-0901)
文摘We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon- cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of o(√n), where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.
基金2022 Basic Scientific Research Project supported by Liaoning Provincial Education Department(No.LJKMZ20221686)。
文摘A new prediction method based on the nonlinear autoregressive model is proposed to improve the accuracy of medium-term and long-term predictions of Satellite Clock Bias(SCB).Forecast experiments for three time periods were implemented based on the precision SCB published on the International GNSS Server(IGS)server.The results show that the medium-term and long-term prediction accuracy of the proposed approach is significantly better compared to other traditional models,with the training time being much shorter than the wavelet neural network model.
基金King Saud University for funding this work through Researchers Supporting Project Number(RSP2022R426),King Saud University,Riyadh,Saudi Arabia.
文摘The current study proposes a novel technique for feature selection by inculcating robustness in the conventional Signal to noise Ratio(SNR).The proposed method utilizes the robust measures of location i.e.,the“Median”as well as the measures of variation i.e.,“Median absolute deviation(MAD)and Interquartile range(IQR)”in the SNR.By this way,two independent robust signal-to-noise ratios have been proposed.The proposed method selects the most informative genes/features by combining the minimum subset of genes or features obtained via the greedy search approach with top-ranked genes selected through the robust signal-to-noise ratio(RSNR).The results obtained via the proposed method are compared with wellknown gene/feature selection methods on the basis of performance metric i.e.,classification error rate.A total of 5 gene expression datasets have been used in this study.Different subsets of informative genes are selected by the proposed and all the other methods included in the study,and their efficacy in terms of classification is investigated by using the classifier models such as support vector machine(SVM),Random forest(RF)and k-nearest neighbors(k-NN).The results of the analysis reveal that the proposed method(RSNR)produces minimum error rates than all the other competing feature selection methods in majority of the cases.For further assessment of the method,a detailed simulation study is also conducted.
文摘Intrusion detection is critical to guaranteeing the safety of the data in the network.Even though,since Internet commerce has grown at a breakneck pace,network traffic kinds are rising daily,and network behavior characteristics are becoming increasingly complicated,posing significant hurdles to intrusion detection.The challenges in terms of false positives,false negatives,low detection accuracy,high running time,adversarial attacks,uncertain attacks,etc.lead to insecure Intrusion Detection System(IDS).To offset the existing challenge,the work has developed a secure Data Mining Intrusion detection system(DataMIDS)framework using Functional Perturbation(FP)feature selection and Bengio Nesterov Momentum-based Tuned Generative Adversarial Network(BNM-tGAN)attack detection technique.The data mining-based framework provides shallow learning of features and emphasizes feature engineering as well as selection.Initially,the IDS data are analyzed for missing values based on the Marginal Likelihood Fisher Information Matrix technique(MLFIMT)that identifies the relationship among the missing values and attack classes.Based on the analysis,the missing values are classified as Missing Completely at Random(MCAR),Missing at random(MAR),Missing Not at Random(MNAR),and handled according to the types.Thereafter,categorical features are handled followed by feature scaling using Absolute Median Division based Robust Scalar(AMDRS)and the Handling of the imbalanced dataset.The selection of relevant features is initiated using FP that uses‘3’Feature Selection(FS)techniques i.e.,Inverse Chi Square based Flamingo Search(ICS-FSO)wrapper method,Hyperparameter Tuned Threshold based Decision Tree(HpTT-DT)embedded method,and Xavier Normal Distribution based Relief(XavND-Relief)filter method.Finally,the selected features are trained and tested for detecting attacks using BNM-tGAN.The Experimental analysis demonstrates that the introduced DataMIDS framework produces an accurate diagnosis about the attack with low computation time.The work av
文摘无线传感器网络存在易遭受恶意节点攻击而导致能量浪费和数据丢失等问题,为解决该问题,提出ETM-LEACH(energy and trust models based LEACH)算法。通过均衡网络能耗计算动态最优簇首数,引入能量判决因子、节点密度因子、节点信任因子改进选举簇首的阈值计算公式。加入绝对偏差过滤掉能量较低节点,采用信任模型引入多种状态信息计算直接信任值和间接信任值,筛选高可信节点。仿真结果表明,与现有协议相比,该协议能够有效降低节点能耗,优化网络部署,提高网络的安全性和可靠性。