扩展有限元(extended finite element method,XFEM)是近年来发展起来的、在常规有限元框架内求解不连续问题的有效数值计算方法,其基于单位分解的思想,在常规有限元位移模式中加入能够反映裂纹面不连续性的跳跃函数及裂尖渐进位移场函数...扩展有限元(extended finite element method,XFEM)是近年来发展起来的、在常规有限元框架内求解不连续问题的有效数值计算方法,其基于单位分解的思想,在常规有限元位移模式中加入能够反映裂纹面不连续性的跳跃函数及裂尖渐进位移场函数,避免了采用常规有限元计算断裂问题时需要对裂纹尖端重新加密网格造成的不便。在推导扩展有限元算法的基础上,分析了应力强度因子的J积分计算方法及积分区域的选取。采用XFEM对I型裂纹进行了计算,有限元网格独立于裂纹面,无需在裂纹尖端加密网格;分析了积分区域、网格密度对应力强度因子计算精度的影响,指出了计算应力强度因子的合适参数,验证了此方法的可靠性和准确性。展开更多
Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,whic...Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectivel展开更多
文摘扩展有限元(extended finite element method,XFEM)是近年来发展起来的、在常规有限元框架内求解不连续问题的有效数值计算方法,其基于单位分解的思想,在常规有限元位移模式中加入能够反映裂纹面不连续性的跳跃函数及裂尖渐进位移场函数,避免了采用常规有限元计算断裂问题时需要对裂纹尖端重新加密网格造成的不便。在推导扩展有限元算法的基础上,分析了应力强度因子的J积分计算方法及积分区域的选取。采用XFEM对I型裂纹进行了计算,有限元网格独立于裂纹面,无需在裂纹尖端加密网格;分析了积分区域、网格密度对应力强度因子计算精度的影响,指出了计算应力强度因子的合适参数,验证了此方法的可靠性和准确性。
基金supported by the National Natural Science Foundation of China (Nos. 42277174, 42077267, and 52074164)the Natural Science Foundation of Shandong Province, China (No. ZR2020JQ23)+2 种基金Major Scientific and Technological Innovation Project of Shandong Province, China (No. 2019SDZY04)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program, China (No. 2019KJG013)the opening project of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (No. KFJJ21-02Z)。
文摘Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectivel