Two variants of the essential approximate point spectrum are discussed. We find for example that if one of them coincides with the left Drazin spectrum then the generalized a-Weyl's theorem holds, and conversely for ...Two variants of the essential approximate point spectrum are discussed. We find for example that if one of them coincides with the left Drazin spectrum then the generalized a-Weyl's theorem holds, and conversely for a-isoloid operators. We also study the generalized a-Weyl's theorem for Class A operators.展开更多
Let T be a Banach space operator, E(T) be the set of all isolated eigenvalues of T and π(T) be the set of all poles of T. In this work, we show that Browder's theorem for T is equivalent to the localized single-...Let T be a Banach space operator, E(T) be the set of all isolated eigenvalues of T and π(T) be the set of all poles of T. In this work, we show that Browder's theorem for T is equivalent to the localized single-valued extension property at all complex numbers λ in the complement of the Weyl spectrum of T, and we give some characterization of Weyl's theorem for operator satisfying E(T) = π(T). An application is also given.展开更多
文摘Two variants of the essential approximate point spectrum are discussed. We find for example that if one of them coincides with the left Drazin spectrum then the generalized a-Weyl's theorem holds, and conversely for a-isoloid operators. We also study the generalized a-Weyl's theorem for Class A operators.
文摘Let T be a Banach space operator, E(T) be the set of all isolated eigenvalues of T and π(T) be the set of all poles of T. In this work, we show that Browder's theorem for T is equivalent to the localized single-valued extension property at all complex numbers λ in the complement of the Weyl spectrum of T, and we give some characterization of Weyl's theorem for operator satisfying E(T) = π(T). An application is also given.