期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
VARIATIONAL DISCRETIZATION FOR OPTIMAL CONTROL GOVERNED BY CONVECTION DOMINATED DIFFUSION EQUATIONS 被引量:3
1
作者 Michael Hinze Ningning Yan Zhaojie Zhou 《Journal of Computational Mathematics》 SCIE CSCD 2009年第2期237-253,共17页
In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization G... In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results. 展开更多
关键词 Constrained optimal control problem Convection dominated diffusion equation Edge stabilization Galerkin method Variational discretization A priori error estimate A posteriori error estimate.
原文传递
p-Laplace问题的混合高阶方法
2
作者 任云云 刘东杰 《计算数学》 CSCD 北大核心 2024年第4期397-408,共12页
本文主要考虑1<p<∞时p-Laplace问题的混合高阶方法(HHO方法).即利用最高次数大于1的分段多项式函数逼近离散未知数,数值变量在Raviart-Thomas有限元空间中进行局部梯度重构,用高阶梯度Ru_(h)代替传统梯度D_(v),且其无需在正则三... 本文主要考虑1<p<∞时p-Laplace问题的混合高阶方法(HHO方法).即利用最高次数大于1的分段多项式函数逼近离散未知数,数值变量在Raviart-Thomas有限元空间中进行局部梯度重构,用高阶梯度Ru_(h)代替传统梯度D_(v),且其无需在正则三角剖分上稳定.我们从能量的角度出发,将离散能量极小值进行梯度重构,在新的距离框架下,通过引入离散应力,得到了HHO方法的先验和后验误差估计.数值算例验证了该混合高阶方法的可靠性和有效性. 展开更多
关键词 p-Laplace问题 混合高阶方法 先验误差估计 后验误差估计
原文传递
A Priori Error Analysis for NCVEM Discretization of Elliptic Optimal Control Problem
3
作者 Shiying Wang Shuo Liu 《Engineering(科研)》 2024年第4期83-101,共19页
In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation o... In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation of state equation and the variational discretization of control variables, we construct a virtual element discrete scheme. For the state, adjoint state and control variable, we obtain the corresponding prior estimate in H<sup>1</sup> and L<sup>2</sup> norms. Finally, some numerical experiments are carried out to support the theoretical results. 展开更多
关键词 Nonconforming Virtual Element Method Optimal Control Problem a priori error estimate
下载PDF
HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION 被引量:3
4
作者 Ruihan Guo Liangyue Ji Yan Xu 《Journal of Computational Mathematics》 SCIE CSCD 2016年第2期135-158,共24页
In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th... In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th order negative-norm estimate of the semi- discrete LDG method for the Allen-Cahn equation with smooth solution. To relax the severe time step restriction of explicit time marching methods, we construct a first order semi-implicit scheme based on the convex splitting principle of the discrete Allen-Cahn energy and prove the corresponding unconditional energy stability. To achieve high order temporal accuracy, we employ the semi-implicit spectral deferred correction (SDC) method. Combining with the unconditionally stable convex splitting scheme, the SDC method can be high order accurate and stable in our numerical tests. To enhance the efficiency of the proposed methods, the multigrid solver is adapted to solve the resulting nonlinear algebraic systems. Numerical studies are presented to confirm that we can achieve optimal accuracy of (O(hk+1) in L2 norm and improve the LDG solution from (O(hk+1) to (O(h2k+1) with the accuracy enhancement post-processing technique. 展开更多
关键词 Local discontinuous Galerkin method Allen-Cahn equation Energy stability Convex splitting Spectral deferred correction A priori error estimate Negative norm errorestimate.
原文传递
A PRIORI AND A POSTERIORI ERROR ESTIMATES OF A WEAKLY OVER-PENALIZED INTERIOR PENALTY METHOD FOR NON-SELF-ADJOINT AND INDEFINITE PROBLEMS 被引量:1
5
作者 Yuping Zeng Jinru Chen +1 位作者 Feng Wang Yanxia Meng 《Journal of Computational Mathematics》 SCIE CSCD 2014年第3期332-347,共16页
In this paper, we study a weakly over-penalized interior penalty method for non-self- adjoint and indefinite problems. An optimal a priori error estimate in the energy norm is derived. In addition, we introduce a resi... In this paper, we study a weakly over-penalized interior penalty method for non-self- adjoint and indefinite problems. An optimal a priori error estimate in the energy norm is derived. In addition, we introduce a residual-based a posteriori error estimator, which is proved to be both reliable and efficient in the energy norm. Some numerical testes are presented to validate our theoretical analysis. 展开更多
关键词 Interior penalty method Weakly over-penalization Non-self-adjoint and indefinite A priori error estimate A posteriori error estimate.
原文传递
固端法:二维有限元先验定量误差估计与控制 被引量:3
6
作者 袁驷 袁全 《工程力学》 EI CSCD 北大核心 2021年第1期8-14,共7页
该文基于有限元超收敛计算的单元能量投影(Element Energy Projection,简称EEP)法,尝试将一维有限元中新近提出的先验定量误差估计的“固端法”拓展到二维有限元分析,以Poisson方程为例,用EEP公式预先估算出各单元的误差,可以不经有限... 该文基于有限元超收敛计算的单元能量投影(Element Energy Projection,简称EEP)法,尝试将一维有限元中新近提出的先验定量误差估计的“固端法”拓展到二维有限元分析,以Poisson方程为例,用EEP公式预先估算出各单元的误差,可以不经有限元求解计算而直接给出满足精度要求的网格划分。该文给出的初步数值算例验证了该法的有效性。 展开更多
关键词 二维有限元法 单元能量投影 固端法 先验定量估计 自适应网格划分
下载PDF
Error estimates of triangular mixed finite element methods for quasilinear optimal control problems 被引量:1
7
作者 Yanping CHEN Zuliang LU Ruyi GUO 《Frontiers of Mathematics in China》 SCIE CSCD 2012年第3期397-413,共17页
The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approx... The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results. 展开更多
关键词 A priori error estimate quasilinear elliptic equation generalconvex optimal control problem triangular mixed finite element method
原文传递
AN IMPROVED ERROR ANALYSIS FOR FINITE ELEMENT APPROXIMATION OF BIOLUMINESCENCE TOMOGRAPHY
8
作者 Wei Gong Ruo Li +1 位作者 Ningning Yan Weibo Zhao 《Journal of Computational Mathematics》 SCIE EI CSCD 2008年第3期297-309,共13页
This paper is concerned with an ill-posed problem which results from the area of molecular imaging and is known as BLT problem. Using Tikhonov regularization technique, a quadratic optimization problem can be formulat... This paper is concerned with an ill-posed problem which results from the area of molecular imaging and is known as BLT problem. Using Tikhonov regularization technique, a quadratic optimization problem can be formulated. We provide an improved error estimate for the finite element approximation of the regularized optimization problem. Some numerical examples are presented to demonstrate our theoretical results. 展开更多
关键词 BLT problem Tikhonov regularization Optimization problem A priori error estimate
原文传递
Virtual Element Discretization of Optimal Control Problem Governed by Brinkman Equations
9
作者 Yanwei Li 《Engineering(科研)》 CAS 2023年第2期114-133,共20页
In this paper, we discuss virtual element method (VEM) approximation of optimal control problem governed by Brinkman equations with control constraints. Based on the polynomial projections and variational discretizati... In this paper, we discuss virtual element method (VEM) approximation of optimal control problem governed by Brinkman equations with control constraints. Based on the polynomial projections and variational discretization of the control variable, we build up the virtual element discrete scheme of the optimal control problem and derive the discrete first order optimality system. A priori error estimates for the state, adjoint state and control variables in L<sup>2</sup> and H<sup>1</sup> norm are derived. The theoretical findings are illustrated by the numerical experiments. 展开更多
关键词 Virtual Element Method Optimal Control Problem Brinkman Equations A priori error estimate
下载PDF
简化摩擦接触问题的对称弱超内罚间断Galerkin方法的先验和后验误差估计
10
作者 曾玉平 翁智峰 胡汉章 《计算数学》 CSCD 北大核心 2021年第2期162-176,共15页
本文讨论了简化摩擦接触问题的一类对称弱超内罚间断Galerkin方法.首先,在能量范数意义下得到最优先验误差估计.进一步,我们推导了一类残量型后验误差估计子,并证明了它的可靠性和有效性.
关键词 变分不等式 摩擦接触问题 弱超罚 间断GALERKIN方法 先验误差估计 后验误差估计
原文传递
发展型对流占优问题Crank-Nicolson-FDSD法的先验及后验估计
11
作者 李晓敏 《山东大学学报(理学版)》 CAS CSCD 北大核心 2003年第1期45-51,共7页
讨论对流占优扩散问题的一种变网格Crank Nicolson FDSD格式 ,并给出了最优的L2 模先验估计和后验误差估计 ,可以在实际计算中用于合理的调整网格 .
关键词 对流占优扩散 变网格Crank-Nicolson-FDSD 先验估计 后验误差估计
下载PDF
HETEROGENEOUS MULTISCALE METHOD FOR OPTIMAL CONTROL PROBLEM GOVERNED BY ELLIPTIC EQUATIONS WITH HIGHLY OSCILLATORY COEFFICIENTS
12
作者 Liang Ge Ningning Yan +2 位作者 Lianhai Wang Wenbin Liu Danping Yang 《Journal of Computational Mathematics》 SCIE CSCD 2018年第5期644-660,共17页
In this paper, we investigate heterogeneous multiscale method (HMM) for the optimal control problem with distributed control constraints governed by elliptic equations with highly oscillatory coefficients. The state... In this paper, we investigate heterogeneous multiscale method (HMM) for the optimal control problem with distributed control constraints governed by elliptic equations with highly oscillatory coefficients. The state variable and co-state variable are approximated by the multiscale discretization scheme that relies on coupled macro and micro finite elements, whereas the control variable is discretized by the piecewise constant. By applying the well- known Lions' Lemma to the discretized optimal control problem, we obtain the necessary and sufficient optimality conditions. A priori error estimates in both L^2 and H^1 norms are derived for the state, co-state and the control variable with uniform bound constants. Finally, numerical examples are presented to illustrate our theoretical results. 展开更多
关键词 Constrained convex optimal control Heterogeneous multiscale finite element A priori error estimate Elliptic equations with highly oscillatory coefficients.
原文传递
抛物型拟线性积分微分方程基于扩展混合有限元的两层网格离散方法
13
作者 曾国艳 陈罗平 付雪梅 《四川师范大学学报(自然科学版)》 CAS 2021年第6期784-791,共8页
为处理方程的拟线性性质,采用基于扩展混合有限元的两层网格离散方法研究拟线性抛物型积分微分方程.相对于经典的两层网格算法,基于扩展混合有限元方法的两层网格算法包含2步.在粗网格上,求解基于显式欧拉格式的线性问题;在细网格上,通... 为处理方程的拟线性性质,采用基于扩展混合有限元的两层网格离散方法研究拟线性抛物型积分微分方程.相对于经典的两层网格算法,基于扩展混合有限元方法的两层网格算法包含2步.在粗网格上,求解基于显式欧拉格式的线性问题;在细网格上,通过将非线性项基于粗网格解进行Taylor展开,从而求解一个线性化的方程组.理论和数值结果显示:当粗细网格步长满足h=H2时,该离散方法具有最优的收敛阶. 展开更多
关键词 两重网格算法 超收敛性 先验误差估计 拟线性抛物型积分微分方程 扩展混合有限元
下载PDF
运动方程时程单元先验步长估计初探
14
作者 袁全 袁驷 《工程力学》 EI CSCD 北大核心 2022年第S01期21-26,共6页
基于单元能量投影(element energy projection,EEP)法和边值问题固端法的思想,将其扩展至运动方程问题。该文以单自由度线性元为例,采用Taylor级数渐近展开,对问题的求解进行实质性简化计算;探讨了不经有限元求解便可进行先验定量误差... 基于单元能量投影(element energy projection,EEP)法和边值问题固端法的思想,将其扩展至运动方程问题。该文以单自由度线性元为例,采用Taylor级数渐近展开,对问题的求解进行实质性简化计算;探讨了不经有限元求解便可进行先验定量误差估计的算法;进而实现了自适应单元步长的先验估计和确定。该文给出初步算例,验证了该方法的可行性和有效性。 展开更多
关键词 GALERKIN有限元法 运动方程 EEP超收敛 先验定量估计 自适应步长
下载PDF
任意区域的网格自动生成和任意高阶有限元方法
15
作者 陈志明 刘勇 《中国科学:数学》 CSCD 北大核心 2024年第3期337-354,共18页
本文首先简要介绍非拟合网格有限元方法求解复杂区域上椭圆问题的发展现状.然后结合最近本文作者发展的非拟合网格有限元方法,针对二阶椭圆方程提出一种任意光滑区域上的任意高阶协调有限元方法.本文在带悬点的Cartesian网格上自动生成... 本文首先简要介绍非拟合网格有限元方法求解复杂区域上椭圆问题的发展现状.然后结合最近本文作者发展的非拟合网格有限元方法,针对二阶椭圆方程提出一种任意光滑区域上的任意高阶协调有限元方法.本文在带悬点的Cartesian网格上自动生成诱导网格,在诱导网格上构造协调的高阶有限元空间,采用Nitsche技术处理Dirichlet边界条件,并证明方法的适定性和hp先验误差估计.数值算例验证了本文的理论结果. 展开更多
关键词 非拟合网格有限元 hp先验误差估计 网格自动生成
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部