In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization G...In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results.展开更多
In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation o...In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation of state equation and the variational discretization of control variables, we construct a virtual element discrete scheme. For the state, adjoint state and control variable, we obtain the corresponding prior estimate in H<sup>1</sup> and L<sup>2</sup> norms. Finally, some numerical experiments are carried out to support the theoretical results.展开更多
In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th...In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th order negative-norm estimate of the semi- discrete LDG method for the Allen-Cahn equation with smooth solution. To relax the severe time step restriction of explicit time marching methods, we construct a first order semi-implicit scheme based on the convex splitting principle of the discrete Allen-Cahn energy and prove the corresponding unconditional energy stability. To achieve high order temporal accuracy, we employ the semi-implicit spectral deferred correction (SDC) method. Combining with the unconditionally stable convex splitting scheme, the SDC method can be high order accurate and stable in our numerical tests. To enhance the efficiency of the proposed methods, the multigrid solver is adapted to solve the resulting nonlinear algebraic systems. Numerical studies are presented to confirm that we can achieve optimal accuracy of (O(hk+1) in L2 norm and improve the LDG solution from (O(hk+1) to (O(h2k+1) with the accuracy enhancement post-processing technique.展开更多
In this paper, we study a weakly over-penalized interior penalty method for non-self- adjoint and indefinite problems. An optimal a priori error estimate in the energy norm is derived. In addition, we introduce a resi...In this paper, we study a weakly over-penalized interior penalty method for non-self- adjoint and indefinite problems. An optimal a priori error estimate in the energy norm is derived. In addition, we introduce a residual-based a posteriori error estimator, which is proved to be both reliable and efficient in the energy norm. Some numerical testes are presented to validate our theoretical analysis.展开更多
该文基于有限元超收敛计算的单元能量投影(Element Energy Projection,简称EEP)法,尝试将一维有限元中新近提出的先验定量误差估计的“固端法”拓展到二维有限元分析,以Poisson方程为例,用EEP公式预先估算出各单元的误差,可以不经有限...该文基于有限元超收敛计算的单元能量投影(Element Energy Projection,简称EEP)法,尝试将一维有限元中新近提出的先验定量误差估计的“固端法”拓展到二维有限元分析,以Poisson方程为例,用EEP公式预先估算出各单元的误差,可以不经有限元求解计算而直接给出满足精度要求的网格划分。该文给出的初步数值算例验证了该法的有效性。展开更多
The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approx...The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.展开更多
This paper is concerned with an ill-posed problem which results from the area of molecular imaging and is known as BLT problem. Using Tikhonov regularization technique, a quadratic optimization problem can be formulat...This paper is concerned with an ill-posed problem which results from the area of molecular imaging and is known as BLT problem. Using Tikhonov regularization technique, a quadratic optimization problem can be formulated. We provide an improved error estimate for the finite element approximation of the regularized optimization problem. Some numerical examples are presented to demonstrate our theoretical results.展开更多
In this paper, we discuss virtual element method (VEM) approximation of optimal control problem governed by Brinkman equations with control constraints. Based on the polynomial projections and variational discretizati...In this paper, we discuss virtual element method (VEM) approximation of optimal control problem governed by Brinkman equations with control constraints. Based on the polynomial projections and variational discretization of the control variable, we build up the virtual element discrete scheme of the optimal control problem and derive the discrete first order optimality system. A priori error estimates for the state, adjoint state and control variables in L<sup>2</sup> and H<sup>1</sup> norm are derived. The theoretical findings are illustrated by the numerical experiments.展开更多
In this paper, we investigate heterogeneous multiscale method (HMM) for the optimal control problem with distributed control constraints governed by elliptic equations with highly oscillatory coefficients. The state...In this paper, we investigate heterogeneous multiscale method (HMM) for the optimal control problem with distributed control constraints governed by elliptic equations with highly oscillatory coefficients. The state variable and co-state variable are approximated by the multiscale discretization scheme that relies on coupled macro and micro finite elements, whereas the control variable is discretized by the piecewise constant. By applying the well- known Lions' Lemma to the discretized optimal control problem, we obtain the necessary and sufficient optimality conditions. A priori error estimates in both L^2 and H^1 norms are derived for the state, co-state and the control variable with uniform bound constants. Finally, numerical examples are presented to illustrate our theoretical results.展开更多
基于单元能量投影(element energy projection,EEP)法和边值问题固端法的思想,将其扩展至运动方程问题。该文以单自由度线性元为例,采用Taylor级数渐近展开,对问题的求解进行实质性简化计算;探讨了不经有限元求解便可进行先验定量误差...基于单元能量投影(element energy projection,EEP)法和边值问题固端法的思想,将其扩展至运动方程问题。该文以单自由度线性元为例,采用Taylor级数渐近展开,对问题的求解进行实质性简化计算;探讨了不经有限元求解便可进行先验定量误差估计的算法;进而实现了自适应单元步长的先验估计和确定。该文给出初步算例,验证了该方法的可行性和有效性。展开更多
基金support of the Chinese and German Research Foundations through the Sino-German Workshop on Applied Mathematics held in Hangzhou in October 2007support of the German Research Foundation through the grants DFG06-381 and DFG06-382+1 种基金support of the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grant 60474027 and 10771211
文摘In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results.
文摘In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation of state equation and the variational discretization of control variables, we construct a virtual element discrete scheme. For the state, adjoint state and control variable, we obtain the corresponding prior estimate in H<sup>1</sup> and L<sup>2</sup> norms. Finally, some numerical experiments are carried out to support the theoretical results.
文摘In this paper, we present a local discontinuous Galerkin (LDG) method for the AllenCahn equation. We prove the energy stability, analyze the optimal convergence rate of k + 1 in L2 norm and present the (2k+1)-th order negative-norm estimate of the semi- discrete LDG method for the Allen-Cahn equation with smooth solution. To relax the severe time step restriction of explicit time marching methods, we construct a first order semi-implicit scheme based on the convex splitting principle of the discrete Allen-Cahn energy and prove the corresponding unconditional energy stability. To achieve high order temporal accuracy, we employ the semi-implicit spectral deferred correction (SDC) method. Combining with the unconditionally stable convex splitting scheme, the SDC method can be high order accurate and stable in our numerical tests. To enhance the efficiency of the proposed methods, the multigrid solver is adapted to solve the resulting nonlinear algebraic systems. Numerical studies are presented to confirm that we can achieve optimal accuracy of (O(hk+1) in L2 norm and improve the LDG solution from (O(hk+1) to (O(h2k+1) with the accuracy enhancement post-processing technique.
基金We thank the anonymous referees for their valuable comments and suggestions which lead to an improved presentation of this paper. This work was supported by NSFC under the grant 11371199, 11226334 and 11301275, the Jiangsu Provincial 2011 Program (Collaborative Innovation Center of Climate Change), the Program of Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 12KJB110013), Natural Science Foundation of Guangdong Province of China (Grant No. S2012040007993) and Educational Commission of Guangdong Province of China (Grant No. 2012LYM0122).
文摘In this paper, we study a weakly over-penalized interior penalty method for non-self- adjoint and indefinite problems. An optimal a priori error estimate in the energy norm is derived. In addition, we introduce a residual-based a posteriori error estimator, which is proved to be both reliable and efficient in the energy norm. Some numerical testes are presented to validate our theoretical analysis.
文摘该文基于有限元超收敛计算的单元能量投影(Element Energy Projection,简称EEP)法,尝试将一维有限元中新近提出的先验定量误差估计的“固端法”拓展到二维有限元分析,以Poisson方程为例,用EEP公式预先估算出各单元的误差,可以不经有限元求解计算而直接给出满足精度要求的网格划分。该文给出的初步数值算例验证了该法的有效性。
文摘The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.
基金the National Natural Science Foundation of China (No. 60474027,10301003 and 10771211)the National Basic Research Program under the Grant 2005CB321701
文摘This paper is concerned with an ill-posed problem which results from the area of molecular imaging and is known as BLT problem. Using Tikhonov regularization technique, a quadratic optimization problem can be formulated. We provide an improved error estimate for the finite element approximation of the regularized optimization problem. Some numerical examples are presented to demonstrate our theoretical results.
文摘In this paper, we discuss virtual element method (VEM) approximation of optimal control problem governed by Brinkman equations with control constraints. Based on the polynomial projections and variational discretization of the control variable, we build up the virtual element discrete scheme of the optimal control problem and derive the discrete first order optimality system. A priori error estimates for the state, adjoint state and control variables in L<sup>2</sup> and H<sup>1</sup> norm are derived. The theoretical findings are illustrated by the numerical experiments.
基金The work was supported by the Shandong Province Outstanding Y- oung Scientists Research Award Fund Project (Grant No. BS2013DX010), by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011FQ030, ZR2013FQ001, ZR2013FM025), by Natural Science Foundation of China (Grant No. 11501326 and 11571356), and by the Shandong Academy of Sciences Youth Fund Project (Grant No. 2013QN007).
文摘In this paper, we investigate heterogeneous multiscale method (HMM) for the optimal control problem with distributed control constraints governed by elliptic equations with highly oscillatory coefficients. The state variable and co-state variable are approximated by the multiscale discretization scheme that relies on coupled macro and micro finite elements, whereas the control variable is discretized by the piecewise constant. By applying the well- known Lions' Lemma to the discretized optimal control problem, we obtain the necessary and sufficient optimality conditions. A priori error estimates in both L^2 and H^1 norms are derived for the state, co-state and the control variable with uniform bound constants. Finally, numerical examples are presented to illustrate our theoretical results.
文摘基于单元能量投影(element energy projection,EEP)法和边值问题固端法的思想,将其扩展至运动方程问题。该文以单自由度线性元为例,采用Taylor级数渐近展开,对问题的求解进行实质性简化计算;探讨了不经有限元求解便可进行先验定量误差估计的算法;进而实现了自适应单元步长的先验估计和确定。该文给出初步算例,验证了该方法的可行性和有效性。