With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges o...With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges on its poor intrinsic electronic conductivity and the controversial de/sodiation mechanism.Herein,a series of Zr-doped NVPF coated by N-doped carbon layer(~5 nm in thickness,homogenously)materials are fabricated by a sol-gel method,and the optimized heteroatom-doping amounts of Zr and N doping improve intrinsic properties on enlarging lattice distance and enhancing electronic conductivity,respectively.Specifically,among all samples of Na_(3) V_(2-x)Zr_(x)(PO_(4))_(2) F_(3)/NC(NVPF-Zr-x/NC,x=0,0.01,0.02,0.05,and 0.1),the optimized electrode of NVPF-Zr-0.02/NC delivers high reversible capacities(119.2 mAh g^(-1) at0.5 C),superior rate capability(98.1 mA h g^(-1) at 20 C)and excellent cycling performance.The structural evolution of NVPF-Zr-0.02/NC electrode,in-situ monitored by X-ray diffractometer,follows a step-wise Na-extraction/intercalation mechanism with reversible multi-phase changes,not just a solid-solutionreaction one.Full cells of NVPF-Zr-0.02/NC//hard carbon demonstrate high capacity(99.8 mA h g^(-1) at 0.5 C),high out-put voltage(3.5 V)and good cycling stability.This work is favorable to accelerate the development of high-performance cathode materials and explore possible redox reaction mechanisms of SIBs.展开更多
The effects of recrystallization and environment (vacuum versus air) on tensile properties of B-free Ni3Al (Zr) alloys were investigated. The results indicate that the incompletely recrystallized and stress-relieved s...The effects of recrystallization and environment (vacuum versus air) on tensile properties of B-free Ni3Al (Zr) alloys were investigated. The results indicate that the incompletely recrystallized and stress-relieved specimens show the most desirable ductility and ultimate tensile strength, and that the recrystallization treatment promotes susceptibility to the test environment of the alloys. It is found that the amount of ductile fracture is reduced by air for completely recrystallized specimens. The Auger analyses show that Zr atoms do not segregate to the grain boundaries(GBs) for specimens heat-treated at 1 100 ℃, however Zr atoms segregate to the GBs for specimens heat-treated at 900 ℃. These results imply that Zr-doping cannot suppress environmental embrittlement.展开更多
Zr-doped CuO-CeO2 catalysts for CO selective oxidation were designed and prepared by the hydrothermal method and coprecipitation. The experimental samples were characterized by means of N2 adsorption-desorption isothe...Zr-doped CuO-CeO2 catalysts for CO selective oxidation were designed and prepared by the hydrothermal method and coprecipitation. The experimental samples were characterized by means of N2 adsorption-desorption isotherms, powder X-ray diffraction, temperature-programmed reduction and Xray photoelectron spectroscopy. It is observed that the catalyst prepared by hydrothermal method exhibits larger specific surface area, smaller crystalline size and higher dispersion of active components compared with those of the catalyst obtained by coprecipitation. Meanwhile, redox properties of copper oxide are improved significantly and highly dispersed copper species providing CO oxidation sites are present on the surface. Furthermore, adsorptive centers of CO and active oxygen species increase on the copper-ceria interfaces. The Zr-doped CuO-CeO2 catalyst prepared by hydrothermal method possesses superior catalytic activity and selectivity for selective oxidation of CO at low temperature compared with those of the sample prepared by coprecipitation. The temperature corresponding to 50% CO conversion is only 73 ℃ and the temperature span of total CO conversion is expanded from 120 to 160 ℃.展开更多
基金the National Natural Science Foundation of China(21975154)the Shanghai Municipal Education Commission(Innovation Program(2019-01-07-00-09E00021)+2 种基金Innovative Research Team of High-level Local Universities in Shanghaisupported by The Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher LearningShanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power。
文摘With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges on its poor intrinsic electronic conductivity and the controversial de/sodiation mechanism.Herein,a series of Zr-doped NVPF coated by N-doped carbon layer(~5 nm in thickness,homogenously)materials are fabricated by a sol-gel method,and the optimized heteroatom-doping amounts of Zr and N doping improve intrinsic properties on enlarging lattice distance and enhancing electronic conductivity,respectively.Specifically,among all samples of Na_(3) V_(2-x)Zr_(x)(PO_(4))_(2) F_(3)/NC(NVPF-Zr-x/NC,x=0,0.01,0.02,0.05,and 0.1),the optimized electrode of NVPF-Zr-0.02/NC delivers high reversible capacities(119.2 mAh g^(-1) at0.5 C),superior rate capability(98.1 mA h g^(-1) at 20 C)and excellent cycling performance.The structural evolution of NVPF-Zr-0.02/NC electrode,in-situ monitored by X-ray diffractometer,follows a step-wise Na-extraction/intercalation mechanism with reversible multi-phase changes,not just a solid-solutionreaction one.Full cells of NVPF-Zr-0.02/NC//hard carbon demonstrate high capacity(99.8 mA h g^(-1) at 0.5 C),high out-put voltage(3.5 V)and good cycling stability.This work is favorable to accelerate the development of high-performance cathode materials and explore possible redox reaction mechanisms of SIBs.
文摘The effects of recrystallization and environment (vacuum versus air) on tensile properties of B-free Ni3Al (Zr) alloys were investigated. The results indicate that the incompletely recrystallized and stress-relieved specimens show the most desirable ductility and ultimate tensile strength, and that the recrystallization treatment promotes susceptibility to the test environment of the alloys. It is found that the amount of ductile fracture is reduced by air for completely recrystallized specimens. The Auger analyses show that Zr atoms do not segregate to the grain boundaries(GBs) for specimens heat-treated at 1 100 ℃, however Zr atoms segregate to the GBs for specimens heat-treated at 900 ℃. These results imply that Zr-doping cannot suppress environmental embrittlement.
基金Project supported by the National Natural Science Foundation of China(21406174 and 51508435)
文摘Zr-doped CuO-CeO2 catalysts for CO selective oxidation were designed and prepared by the hydrothermal method and coprecipitation. The experimental samples were characterized by means of N2 adsorption-desorption isotherms, powder X-ray diffraction, temperature-programmed reduction and Xray photoelectron spectroscopy. It is observed that the catalyst prepared by hydrothermal method exhibits larger specific surface area, smaller crystalline size and higher dispersion of active components compared with those of the catalyst obtained by coprecipitation. Meanwhile, redox properties of copper oxide are improved significantly and highly dispersed copper species providing CO oxidation sites are present on the surface. Furthermore, adsorptive centers of CO and active oxygen species increase on the copper-ceria interfaces. The Zr-doped CuO-CeO2 catalyst prepared by hydrothermal method possesses superior catalytic activity and selectivity for selective oxidation of CO at low temperature compared with those of the sample prepared by coprecipitation. The temperature corresponding to 50% CO conversion is only 73 ℃ and the temperature span of total CO conversion is expanded from 120 to 160 ℃.