A study of leeward vortex structure over chined fuselage and the effects of micro tip perturbation on its vortex flow have been carried out in wind tunnel experiments at Reynolds numbers from 1.26×105 to 5.04...A study of leeward vortex structure over chined fuselage and the effects of micro tip perturbation on its vortex flow have been carried out in wind tunnel experiments at Reynolds numbers from 1.26×105 to 5.04×105 with PIV and pressure measurement techniques.Firstly,the experiment results have proved that micro tip perturbation has no effects on the vortex flow and its aerodynamic characteristics over chined fuselage at high angle of attack,in which there are not any non-deterministic flow behaviors.Secondly,the evolution of leeward vortex structure over chined fuselage along the axis of model can be divided into four flow regimes:linear conical developed regime,decay regime of leeward vortex intensity,asymmetric leeward vortex break down regime and completely break down regime.And a correlation between leeward vortex structure and sectional aerodynamic force was also revealed in the present paper.Thirdly,the experiment results show the behavior of leeward vortex core trajectories and zonal characteristics of leeward vortex structure with angles of attack.Finally,the experiment results of Reynolds number effect on the leeward vortex flow have further confirmed research conclusions from previous studies:the flows over chined fuselage at high angles of attack are insensitive to variation of Reynolds number,and there is a little effect on the secondary boundary layer separation and the suction peak induced by leeward vortex.展开更多
Based on comparative analysis on hydrochemical characteristics of geothermal water in the north part of Liaokao fault,this research focuses on studying the indicative significance of hydrochemical characteristics for ...Based on comparative analysis on hydrochemical characteristics of geothermal water in the north part of Liaokao fault,this research focuses on studying the indicative significance of hydrochemical characteristics for the formation of geothermal water.The result shows that:(1)There is no obvious hydraulic connection between the karst geothermal water(occurred in the east part of the Liaokao fault)and the sandstone geothermal water(occurred in the west part of Liaokao fault).(2)In a close hydrological environment,caused by tectonic activities,geothermal water remains longer time in reservoir,hence the water-rock interaction is more complete,with high degree of concentrations,whereas the renewable capacity of the water is weaker.(3)There is no high temperature mantle source fluid mixed in the geothermal water.Karst geothermal water occurred deep circulatory convection along Liaokao fault and its secondary fault,therefore there is deep crust source fluid added into the geothermal water,closer to the Liaokao fault,the greater affected by the deep crust fluid.However,sandstone geothermal water has weak deep circulatory convection.展开更多
Using 32-yr National Centers for Environment Prediction-National Center for Atmospheric Research(NCEP-NCAR) reanalysis data,we investigated zonal propagation and circulation characteristics of the low-frequency circul...Using 32-yr National Centers for Environment Prediction-National Center for Atmospheric Research(NCEP-NCAR) reanalysis data,we investigated zonal propagation and circulation characteristics of the low-frequency circulation for the prevailing period over Eurasian mid-high latitude in boreal summer(May-August) in terms of empirical orthogonal function(EOF),linear regression,and phase analysis and so on.We found that the dominant periods of the low-frequency circulation are 10-30 days and it clearly shows meridional(southward) and zonal(westward) propagation features at the middle troposphere(500 hPa).The average zonal speed of the 10-30 days low-frequency oscillation(LFO) is about 9-10 longitudes per day.Further analysis shows that the southernmost part of the polar vortex in the northern hemisphere exhibits westward clockwise rotation in the eastern hemisphere in boreal summer.Also,the southernmost tips of 5400 and 5500 gpm contours,which indicate the site of the major trough in the eastern hemisphere,obviously move westwards.The southernmost tip of 5500 gpm contour line propagates westwards at the speed of about 9-10 longitudes per day,which is consistent with the mean zonal speed of the westward propagation of the low-frequency circulation.Moreover,the 10-30-day LFO-related cold air also shows west propagation feature with respect to LFO phases.The westward propagation of the LFO is the low-frequency-scale embodiment of the clockwise rotation of polar vortex.The cold air activities closely related to polar vortex or to ridge-trough system activities is the essential circulation of 10-30 days LFO circulation over the Eurasian mid-high latitude in boreal summer.展开更多
The characteristics of zonal anomaly and change rule of temporal distribution of annual precipitation in the northeastern China are revealed in this paper with EOF (Empirical Orthogonal Function) and REOF (Rotated Emp...The characteristics of zonal anomaly and change rule of temporal distribution of annual precipitation in the northeastern China are revealed in this paper with EOF (Empirical Orthogonal Function) and REOF (Rotated Empirical Orthogonal Function) methods and results are drawn in the standard relief maps with GIS technology for practical application. Data used in the study were obtained from 208 meteorological stations over the northeastern China from 1961 to 2001. EOF results show that the first 3 loading vectors could give entire spatial anomaly structure of annual precipitation. In the Northeast Plain including the Songneng Plain and the Liaohe Plain, there is a regional compatibility (whether wet or dry) of annual precipitation change and this precipitation pattern has occurred since the late 1980s to the present. There also exist annual precipitation patterns of wet (or dry) in south and dry (or wet) in north and wet (or dry) in east and dry (or wet) in west. REOF results display 8 principal precipitation anomaly areas by the first 8 rotated loading vectors: the west plain, the Liaodong hills, the Sanjiang Plain, the Liaoxi hills, the Changbai Mountains, the Hulun Buir Plateau, the southwest plateau and the Liaodong Peninsula.展开更多
This paper is an extension of the author's paper (Xie,1982) to the spherical earth.It is found that the simi- lar results are obtained under the assumption of isotropic distribution of horizontal kinetic energy al...This paper is an extension of the author's paper (Xie,1982) to the spherical earth.It is found that the simi- lar results are obtained under the assumption of isotropic distribution of horizontal kinetic energy along the zonal and meridional directions.It points out the limitation of the results already obtained and paves the path for the approach of anisotropie semi-eddy or quasi-eddy motion of the atmosphere.展开更多
Reducing the fuel consumption of ships presents both economic and environmental gains. Although in the past decades,extensive studies were carried out on the flow around ship hull, it is still difficult to calculate t...Reducing the fuel consumption of ships presents both economic and environmental gains. Although in the past decades,extensive studies were carried out on the flow around ship hull, it is still difficult to calculate the flow around the hull while considering propeller interaction. In this paper, the viscous flow around modern ship hulls is computed considering propeller action. In this analysis, the numerical investigation of flow around the ship is combined with propeller theory to simulate the hull-propeller interaction. Various longitudinal positions of the rudder are also analyzed to determine the effect of rudder position on propeller efficiency. First, a numerical study was performed around a bare hull using Shipflow computational fluid dynamics(CFD) code to determine free-surface wave elevation and resistance components.A zonal approach was applied to successively incorporate Bpotential flow solver^ in the region outside the boundary layer and wake, Bboundary layer solver^ in the thin boundary layer region near the ship hull, and BNavier-Stokes solver^in the wake region. Propeller open water characteristics were determined using an open-source MATLAB code Open Prop, which is based on the lifting line theory, for the moderately loaded propeller. The obtained open water test results were specified in the flow module of Shipflow for self-propulsion tests. The velocity field behind the ship was recalculated into an effective wake and given to the propeller code that calculates the propeller load. Once the load was known, it was transferred to the Reynolds-averaged Navier-Stokes(RANS) solver to simulate the propeller action. The interaction between the hull and propeller with different rudder positions was then predicted to improve the propulsive efficiency.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.10432020,10872019)the Youth Fund of National Natural Science Foundation of China(Grant No.10702004)
文摘A study of leeward vortex structure over chined fuselage and the effects of micro tip perturbation on its vortex flow have been carried out in wind tunnel experiments at Reynolds numbers from 1.26×105 to 5.04×105 with PIV and pressure measurement techniques.Firstly,the experiment results have proved that micro tip perturbation has no effects on the vortex flow and its aerodynamic characteristics over chined fuselage at high angle of attack,in which there are not any non-deterministic flow behaviors.Secondly,the evolution of leeward vortex structure over chined fuselage along the axis of model can be divided into four flow regimes:linear conical developed regime,decay regime of leeward vortex intensity,asymmetric leeward vortex break down regime and completely break down regime.And a correlation between leeward vortex structure and sectional aerodynamic force was also revealed in the present paper.Thirdly,the experiment results show the behavior of leeward vortex core trajectories and zonal characteristics of leeward vortex structure with angles of attack.Finally,the experiment results of Reynolds number effect on the leeward vortex flow have further confirmed research conclusions from previous studies:the flows over chined fuselage at high angles of attack are insensitive to variation of Reynolds number,and there is a little effect on the secondary boundary layer separation and the suction peak induced by leeward vortex.
基金This research was financially supported by China Geological Survey Project(DD20189114,DD20190129)the Basic Scientific Research Project of the Chinese Academy of Geological Sciences(JKY1722,YWF201903-01 and JYYWF20180501).
文摘Based on comparative analysis on hydrochemical characteristics of geothermal water in the north part of Liaokao fault,this research focuses on studying the indicative significance of hydrochemical characteristics for the formation of geothermal water.The result shows that:(1)There is no obvious hydraulic connection between the karst geothermal water(occurred in the east part of the Liaokao fault)and the sandstone geothermal water(occurred in the west part of Liaokao fault).(2)In a close hydrological environment,caused by tectonic activities,geothermal water remains longer time in reservoir,hence the water-rock interaction is more complete,with high degree of concentrations,whereas the renewable capacity of the water is weaker.(3)There is no high temperature mantle source fluid mixed in the geothermal water.Karst geothermal water occurred deep circulatory convection along Liaokao fault and its secondary fault,therefore there is deep crust source fluid added into the geothermal water,closer to the Liaokao fault,the greater affected by the deep crust fluid.However,sandstone geothermal water has weak deep circulatory convection.
基金supported jointly by the National Natural Science Foundation of China(Grant Nos.40875052&41221064)the Calling Project of China(Grant Nos.GYHY200906017&GYHY201006020)the Basic Research Foundation of CAMS(Grant No.2010Z003)
文摘Using 32-yr National Centers for Environment Prediction-National Center for Atmospheric Research(NCEP-NCAR) reanalysis data,we investigated zonal propagation and circulation characteristics of the low-frequency circulation for the prevailing period over Eurasian mid-high latitude in boreal summer(May-August) in terms of empirical orthogonal function(EOF),linear regression,and phase analysis and so on.We found that the dominant periods of the low-frequency circulation are 10-30 days and it clearly shows meridional(southward) and zonal(westward) propagation features at the middle troposphere(500 hPa).The average zonal speed of the 10-30 days low-frequency oscillation(LFO) is about 9-10 longitudes per day.Further analysis shows that the southernmost part of the polar vortex in the northern hemisphere exhibits westward clockwise rotation in the eastern hemisphere in boreal summer.Also,the southernmost tips of 5400 and 5500 gpm contours,which indicate the site of the major trough in the eastern hemisphere,obviously move westwards.The southernmost tip of 5500 gpm contour line propagates westwards at the speed of about 9-10 longitudes per day,which is consistent with the mean zonal speed of the westward propagation of the low-frequency circulation.Moreover,the 10-30-day LFO-related cold air also shows west propagation feature with respect to LFO phases.The westward propagation of the LFO is the low-frequency-scale embodiment of the clockwise rotation of polar vortex.The cold air activities closely related to polar vortex or to ridge-trough system activities is the essential circulation of 10-30 days LFO circulation over the Eurasian mid-high latitude in boreal summer.
文摘The characteristics of zonal anomaly and change rule of temporal distribution of annual precipitation in the northeastern China are revealed in this paper with EOF (Empirical Orthogonal Function) and REOF (Rotated Empirical Orthogonal Function) methods and results are drawn in the standard relief maps with GIS technology for practical application. Data used in the study were obtained from 208 meteorological stations over the northeastern China from 1961 to 2001. EOF results show that the first 3 loading vectors could give entire spatial anomaly structure of annual precipitation. In the Northeast Plain including the Songneng Plain and the Liaohe Plain, there is a regional compatibility (whether wet or dry) of annual precipitation change and this precipitation pattern has occurred since the late 1980s to the present. There also exist annual precipitation patterns of wet (or dry) in south and dry (or wet) in north and wet (or dry) in east and dry (or wet) in west. REOF results display 8 principal precipitation anomaly areas by the first 8 rotated loading vectors: the west plain, the Liaodong hills, the Sanjiang Plain, the Liaoxi hills, the Changbai Mountains, the Hulun Buir Plateau, the southwest plateau and the Liaodong Peninsula.
文摘This paper is an extension of the author's paper (Xie,1982) to the spherical earth.It is found that the simi- lar results are obtained under the assumption of isotropic distribution of horizontal kinetic energy along the zonal and meridional directions.It points out the limitation of the results already obtained and paves the path for the approach of anisotropie semi-eddy or quasi-eddy motion of the atmosphere.
基金the Committee for Advanced Studies and Research(CASR)Bangladesh University of Engineering and Technology for granting research fundsub-project CP No.2084 of Department of Naval Architecture and Marine Engineering under Higher Education Quality Enhancement Project(HEQEP),UGC,Ministry of Education,Govt.of Bangladesh for providing necessary research facilities during the current research work
文摘Reducing the fuel consumption of ships presents both economic and environmental gains. Although in the past decades,extensive studies were carried out on the flow around ship hull, it is still difficult to calculate the flow around the hull while considering propeller interaction. In this paper, the viscous flow around modern ship hulls is computed considering propeller action. In this analysis, the numerical investigation of flow around the ship is combined with propeller theory to simulate the hull-propeller interaction. Various longitudinal positions of the rudder are also analyzed to determine the effect of rudder position on propeller efficiency. First, a numerical study was performed around a bare hull using Shipflow computational fluid dynamics(CFD) code to determine free-surface wave elevation and resistance components.A zonal approach was applied to successively incorporate Bpotential flow solver^ in the region outside the boundary layer and wake, Bboundary layer solver^ in the thin boundary layer region near the ship hull, and BNavier-Stokes solver^in the wake region. Propeller open water characteristics were determined using an open-source MATLAB code Open Prop, which is based on the lifting line theory, for the moderately loaded propeller. The obtained open water test results were specified in the flow module of Shipflow for self-propulsion tests. The velocity field behind the ship was recalculated into an effective wake and given to the propeller code that calculates the propeller load. Once the load was known, it was transferred to the Reynolds-averaged Navier-Stokes(RANS) solver to simulate the propeller action. The interaction between the hull and propeller with different rudder positions was then predicted to improve the propulsive efficiency.