以固体硅胶为硅源考察了六亚甲基亚胺(HMI)和环己胺(CHA)二元胺模板剂对分子筛合成产物的影响.XRD测试结果表明,当晶化温度为160℃,晶化时间为84 h,SiO2/Al2O3摩尔比为30,Na2O∶H2O∶(HMI+CHA)∶SiO2摩尔比为0.11∶45∶0.35∶1时,即使HM...以固体硅胶为硅源考察了六亚甲基亚胺(HMI)和环己胺(CHA)二元胺模板剂对分子筛合成产物的影响.XRD测试结果表明,当晶化温度为160℃,晶化时间为84 h,SiO2/Al2O3摩尔比为30,Na2O∶H2O∶(HMI+CHA)∶SiO2摩尔比为0.11∶45∶0.35∶1时,即使HMI仅占二元胺模板剂的25%(摩尔分数),所得分子筛仍为MCM-22;其它条件相同时,以单纯CHA为模板剂得到的是ZSM-35分子筛.用13C MAS NMR研究了HMI和CHA的状态,结果表明在单一HMI合成体系中,HMI既起MCM-22结构导向作用,又经质子化后起稳定骨架的作用;而在HMI和CHA二元胺体系中,HMI主要起结构导向作用,CHA则填充在MCM-22层间十元环中稳定骨架.展开更多
The ZSM-22 and ZSM-35 zeolites were synthesized via the hydrothermal crystallization method. The samples were characterized by XRD, SEM, N_2 adsorption-desorption, NH_3-TPD, TPO, TG, and Raman spectrometry, and the re...The ZSM-22 and ZSM-35 zeolites were synthesized via the hydrothermal crystallization method. The samples were characterized by XRD, SEM, N_2 adsorption-desorption, NH_3-TPD, TPO, TG, and Raman spectrometry, and the results showed that ZSM-22 and ZSM-35 possessed similar microporous volume and acidity. In the alkylation of benzene with methanol, ZSM-22 and ZSM-35 showed different coke location, coking rate and graphitizing degree. Compared with the industrial ZSM-5, ZSM-22 and ZSM-35 both showed higher selectivity of toluene and xylene(93.63% and 96.50%,respectively) during the alkylation of benzene with methanol, and the selectivity of para-xylene in xylene isomers was51.96% and 41.45%, respectively. Meanwhile, the selectivity of ethylbenzene and C_9^+ aromatics was also lower than that of industrial ZSM-5.展开更多
Acrylic acid(AA)and its ester,methyl acrylate(MA),were produced by a green one‐step aldol condensation reaction of dimethoxymethane and methyl acetate.The reaction was conducted over ZSM‐35 zeolites with different c...Acrylic acid(AA)and its ester,methyl acrylate(MA),were produced by a green one‐step aldol condensation reaction of dimethoxymethane and methyl acetate.The reaction was conducted over ZSM‐35 zeolites with different concentrations of Bronsted acid,which were prepared by the sodium ion‐exchange process with H‐form zeolite.The acidic property of HZSM‐35 was studied in detail through infrared experiments.About 51%of all bridging OH groups were distributed in cages,while 23%and 26%,respectively,were distributed in 10‐and 8‐ring channels.The catalytic performance was enhanced by a high concentration of Bronsted acid,indicating that Bronsted acid is an active site for the aldol condensation reaction.The ZSM‐35 zeolite possessing a concentration of Bronsted acid as high as 0.049 mmol/g demonstrated excellent performance with a MA+AA selectivity of up to 73%.展开更多
文摘以固体硅胶为硅源考察了六亚甲基亚胺(HMI)和环己胺(CHA)二元胺模板剂对分子筛合成产物的影响.XRD测试结果表明,当晶化温度为160℃,晶化时间为84 h,SiO2/Al2O3摩尔比为30,Na2O∶H2O∶(HMI+CHA)∶SiO2摩尔比为0.11∶45∶0.35∶1时,即使HMI仅占二元胺模板剂的25%(摩尔分数),所得分子筛仍为MCM-22;其它条件相同时,以单纯CHA为模板剂得到的是ZSM-35分子筛.用13C MAS NMR研究了HMI和CHA的状态,结果表明在单一HMI合成体系中,HMI既起MCM-22结构导向作用,又经质子化后起稳定骨架的作用;而在HMI和CHA二元胺体系中,HMI主要起结构导向作用,CHA则填充在MCM-22层间十元环中稳定骨架.
基金financial support from the National Natural Science Foundation of China (No.2177061270)
文摘The ZSM-22 and ZSM-35 zeolites were synthesized via the hydrothermal crystallization method. The samples were characterized by XRD, SEM, N_2 adsorption-desorption, NH_3-TPD, TPO, TG, and Raman spectrometry, and the results showed that ZSM-22 and ZSM-35 possessed similar microporous volume and acidity. In the alkylation of benzene with methanol, ZSM-22 and ZSM-35 showed different coke location, coking rate and graphitizing degree. Compared with the industrial ZSM-5, ZSM-22 and ZSM-35 both showed higher selectivity of toluene and xylene(93.63% and 96.50%,respectively) during the alkylation of benzene with methanol, and the selectivity of para-xylene in xylene isomers was51.96% and 41.45%, respectively. Meanwhile, the selectivity of ethylbenzene and C_9^+ aromatics was also lower than that of industrial ZSM-5.
文摘Acrylic acid(AA)and its ester,methyl acrylate(MA),were produced by a green one‐step aldol condensation reaction of dimethoxymethane and methyl acetate.The reaction was conducted over ZSM‐35 zeolites with different concentrations of Bronsted acid,which were prepared by the sodium ion‐exchange process with H‐form zeolite.The acidic property of HZSM‐35 was studied in detail through infrared experiments.About 51%of all bridging OH groups were distributed in cages,while 23%and 26%,respectively,were distributed in 10‐and 8‐ring channels.The catalytic performance was enhanced by a high concentration of Bronsted acid,indicating that Bronsted acid is an active site for the aldol condensation reaction.The ZSM‐35 zeolite possessing a concentration of Bronsted acid as high as 0.049 mmol/g demonstrated excellent performance with a MA+AA selectivity of up to 73%.