Obstructive sleep apnea can worsen the prognosis of subarachnoid hemorrhage.Howeve r,the underlying mechanism remains unclear.In this study,we established a mouse model of subarachnoid hemorrhage using the endovascula...Obstructive sleep apnea can worsen the prognosis of subarachnoid hemorrhage.Howeve r,the underlying mechanism remains unclear.In this study,we established a mouse model of subarachnoid hemorrhage using the endovascular perforation method and exposed the mice to intermittent hypoxia for 8 hours daily for 2 consecutive days to simulate sleep apnea.We found that sleep apnea aggravated brain edema,increased hippocampal neuron apoptosis,and worsened neurological function in this mouse model of subarachnoid hemorrhage.Then,we established an in vitro HT-22 cell model of hemin-induced subarachnoid hemorrhage/intermittent hypoxia and found that the cells died,and lactate dehydrogenase release increased,after 48 hours.We further investigated the underlying mechanism and found that sleep apnea increased the expression of hippocampal neuroinflammatory factors interleukin-1β,interleukin-18,inte rleukin-6,nuclear factorκB,pyro ptosis-related protein caspase-1,pro-caspase-1,and NLRP3,promoted the prolife ration of astrocytes,and increased the expression of hypoxia-inducible factor 1αand apoptosis-associated speck-like protein containing a CARD,which are the key proteins in the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.We also found that knockdown of hypoxia-inducible factor 1αexpression in vitro greatly reduced the damage to HY22 cells.These findings suggest that sleep apnea aggravates early brain injury after subarachnoid hemorrhage by aggravating neuroinflammation and pyroptosis,at least in part through the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.展开更多
目的对1株在九江地区分离的柯萨奇A6病毒(CoxA6)VP1区域进行克隆,并对其编码蛋白的结构、功能及B细胞表位进行分析和预测,为CoxA6疫苗制备和诊断方法的研究提供理论基础。方法采用RT-PCR法对CoxA6分离株VP1区进行扩增和克隆、序列分析,...目的对1株在九江地区分离的柯萨奇A6病毒(CoxA6)VP1区域进行克隆,并对其编码蛋白的结构、功能及B细胞表位进行分析和预测,为CoxA6疫苗制备和诊断方法的研究提供理论基础。方法采用RT-PCR法对CoxA6分离株VP1区进行扩增和克隆、序列分析,应用SigaIP、TMPRED、TMHMM、Big-PI Predictor、Cell-Ploc、PSORT、NetNES、Netphos、SOPMA、NetNGlyc、MotifScan、InterProscan、SMART、PROSITE、GOR4、Bepipred Linear Epitope Prediction等生物信息学方法预测其VP1基因编码蛋白特性和潜在的B细胞表位。结果该CoxA6分离株VP1基因编码305aa的多肽,分子量为33.5kDa。该蛋白无信号肽、跨膜区,是亲水性蛋白;二级结构主要以无规则卷曲为主,其次为α-螺旋及β-片层。该蛋白共有7个可能的B细胞抗原表位,位于151~173aa区域内的表位分值最高为2.774。结论成功克隆了1株CoxA6的VP1基因,并对其进行序列分析、蛋白质结构和B细胞表位预测,为制备CoxA6疫苗和开发诊断方法提供了分子生物学基础。展开更多
Let pj ∈ N and pj ≥-1, j = 2,...,n be a fixed positive integer. In this paper a generalized Roper-Suffridge extension operator F(z) ={f(Z1)+f'(z1)} on Reinhardt domain is defined. Some different conditions f...Let pj ∈ N and pj ≥-1, j = 2,...,n be a fixed positive integer. In this paper a generalized Roper-Suffridge extension operator F(z) ={f(Z1)+f'(z1)} on Reinhardt domain is defined. Some different conditions for Pj areestablished under which the operator preserves an almost spirallike mapping of type fl and order a and spirallike mapping of type β and order α, respectively. In particular, our results reduce to many well-known results.展开更多
The yeast MATα1 is required for the activation of α-specific genes in Saccharomyces cerevisiae and thus confers the α-cell identity of the yeast. MATα1 contains a domain called the α-domain which has significant ...The yeast MATα1 is required for the activation of α-specific genes in Saccharomyces cerevisiae and thus confers the α-cell identity of the yeast. MATα1 contains a domain called the α-domain which has significant sequence identity to the HMG-box family of proteins. A multiple sequence alignment of several α-domains and various structurally determined HMG-box domains has revealed that both domains possess very similar structural and functional residues. We found that the basic amino acids of the N-terminal loop, the intercalating hydrophobic residues of the first helix, and the hydrophobic residues required for interactions within the core of the protein are remarkably conserved in α-domains and HMG-box proteins. Our generated molecular models suggest that the first and third helix will be shorter and that the HMG-box core is not an isolated domain. The region beyond the conserved HMG-box motif contains an extended helical region for about 20 - 30 amino acids. Structural models generated by comparative modeling and ab initio modeling reveal that this region will add two or more additional α-helices and will make significant contacts to helix III, II and I of the HMG-box core. We were able to illustrate how the extended α-domain would bind to DNA by merging of the α-domain and the LEF-1/DNA complex. The models we are reporting will be helpful in understanding how MATα1 binds to DNA with its partner MCM1 and activates transcription of α-specific genes. These models will also aid in future biophysical studies of MATα1 including the crystallization and structure determination.展开更多
基金the Natural Science Foundation of Jiangsu Province(Youth Program),No.BK20190129National Scientific Program of Jiangsu Colleges and Universities of China,No.19KJB320012(both to LY)。
文摘Obstructive sleep apnea can worsen the prognosis of subarachnoid hemorrhage.Howeve r,the underlying mechanism remains unclear.In this study,we established a mouse model of subarachnoid hemorrhage using the endovascular perforation method and exposed the mice to intermittent hypoxia for 8 hours daily for 2 consecutive days to simulate sleep apnea.We found that sleep apnea aggravated brain edema,increased hippocampal neuron apoptosis,and worsened neurological function in this mouse model of subarachnoid hemorrhage.Then,we established an in vitro HT-22 cell model of hemin-induced subarachnoid hemorrhage/intermittent hypoxia and found that the cells died,and lactate dehydrogenase release increased,after 48 hours.We further investigated the underlying mechanism and found that sleep apnea increased the expression of hippocampal neuroinflammatory factors interleukin-1β,interleukin-18,inte rleukin-6,nuclear factorκB,pyro ptosis-related protein caspase-1,pro-caspase-1,and NLRP3,promoted the prolife ration of astrocytes,and increased the expression of hypoxia-inducible factor 1αand apoptosis-associated speck-like protein containing a CARD,which are the key proteins in the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.We also found that knockdown of hypoxia-inducible factor 1αexpression in vitro greatly reduced the damage to HY22 cells.These findings suggest that sleep apnea aggravates early brain injury after subarachnoid hemorrhage by aggravating neuroinflammation and pyroptosis,at least in part through the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.
文摘目的对1株在九江地区分离的柯萨奇A6病毒(CoxA6)VP1区域进行克隆,并对其编码蛋白的结构、功能及B细胞表位进行分析和预测,为CoxA6疫苗制备和诊断方法的研究提供理论基础。方法采用RT-PCR法对CoxA6分离株VP1区进行扩增和克隆、序列分析,应用SigaIP、TMPRED、TMHMM、Big-PI Predictor、Cell-Ploc、PSORT、NetNES、Netphos、SOPMA、NetNGlyc、MotifScan、InterProscan、SMART、PROSITE、GOR4、Bepipred Linear Epitope Prediction等生物信息学方法预测其VP1基因编码蛋白特性和潜在的B细胞表位。结果该CoxA6分离株VP1基因编码305aa的多肽,分子量为33.5kDa。该蛋白无信号肽、跨膜区,是亲水性蛋白;二级结构主要以无规则卷曲为主,其次为α-螺旋及β-片层。该蛋白共有7个可能的B细胞抗原表位,位于151~173aa区域内的表位分值最高为2.774。结论成功克隆了1株CoxA6的VP1基因,并对其进行序列分析、蛋白质结构和B细胞表位预测,为制备CoxA6疫苗和开发诊断方法提供了分子生物学基础。
文摘Let pj ∈ N and pj ≥-1, j = 2,...,n be a fixed positive integer. In this paper a generalized Roper-Suffridge extension operator F(z) ={f(Z1)+f'(z1)} on Reinhardt domain is defined. Some different conditions for Pj areestablished under which the operator preserves an almost spirallike mapping of type fl and order a and spirallike mapping of type β and order α, respectively. In particular, our results reduce to many well-known results.
文摘The yeast MATα1 is required for the activation of α-specific genes in Saccharomyces cerevisiae and thus confers the α-cell identity of the yeast. MATα1 contains a domain called the α-domain which has significant sequence identity to the HMG-box family of proteins. A multiple sequence alignment of several α-domains and various structurally determined HMG-box domains has revealed that both domains possess very similar structural and functional residues. We found that the basic amino acids of the N-terminal loop, the intercalating hydrophobic residues of the first helix, and the hydrophobic residues required for interactions within the core of the protein are remarkably conserved in α-domains and HMG-box proteins. Our generated molecular models suggest that the first and third helix will be shorter and that the HMG-box core is not an isolated domain. The region beyond the conserved HMG-box motif contains an extended helical region for about 20 - 30 amino acids. Structural models generated by comparative modeling and ab initio modeling reveal that this region will add two or more additional α-helices and will make significant contacts to helix III, II and I of the HMG-box core. We were able to illustrate how the extended α-domain would bind to DNA by merging of the α-domain and the LEF-1/DNA complex. The models we are reporting will be helpful in understanding how MATα1 binds to DNA with its partner MCM1 and activates transcription of α-specific genes. These models will also aid in future biophysical studies of MATα1 including the crystallization and structure determination.