As revealed by field investigations,the co-seismic surface rupture zone of the 2010 MS7.1 Yushu earthquake,Qinghai is a characteristic sinistral strike-slip feature consisting of three distinct sinistral primary ruptu...As revealed by field investigations,the co-seismic surface rupture zone of the 2010 MS7.1 Yushu earthquake,Qinghai is a characteristic sinistral strike-slip feature consisting of three distinct sinistral primary ruptures,with an overall strike of 310°-320° and a total length of 31 km.In addition,an approximately 2-km-long en-echelon tensile fissure zone was found east of Longbao Town;if this site is taken as the north end of the rupture zone,then the rupture had a total length of ~51 km.The surface rupture zone is composed of a series of fissures arranged in an en-echelon or alternating relationship between compressive bulges and tensile fissures,with a measured maximum horizontal displacement of 1.8 m.The surface rupture zone extends along the mapped Garzê-Yushu Fault,which implicates it as the seismogenic fault for this earthquake.Historically,a few earthquakes with a magnitude of about 7 have occurred along the fault,and additionally traces of paleoearthquakes are evident that characterize the short-period recurrence interval of large earthquakes here.Similar to the seismogenic process of the 2008 Wenchuan earthquake,the Yushu earthquake is also due to the stress accumulation and release on the block boundaries resulting from the eastward expansion of Qinghai-Tibet Plateau.However,in contrast with the Wenchuan earthquake,the Yushu earthquake had a sinistral strike-slip mechanism resulting from the uneven eastward extrusion of the Baryan Har and Sichuan-Yunnan fault blocks.展开更多
The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 〉 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fau...The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 〉 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fault and depend on the structure of the upper crust as well as the pre-existing tectonics. Therefore, the most recent co-seismic surface ruptures along the Garzê–Yushu fault zone(Dangjiang segment) reveal the surface deformation of the central Tibetan Plateau. Remote sensing images and field investigations suggest a 85 km long surface rupture zone(striking NW-NWW), less than 50 m wide, defined by discontinuous fault scarps, right-stepping en echelon tensional cracks and left-stepping mole tracks that point to a left-lateral strike-slip fault. The gullies that cross fault scarps record systematic left-lateral offsets of 1.8 m to 5.0 m owing to the most recent earthquake, with moment magnitude of about M 7.5, in the Dangjiang segment. Geological and geomorphological features suggest that the spatial distribution of the 1738 co-seismic surface rupture zone was controlled by the pre-existing active Garzê–Yushu fault zone(Dangjiang segment). We confirm that the Garzê–Yushu fault zone, a boundary between the Bayan Har Block to the north and the Qiangtang Block to the south, accommodates the eastward extrusion of the Tibetan Plateau and generates strong earthquakes that release the strain energy owing to the relative motion between the Bayan Har and Qiangtang Blocks.展开更多
基金supported by the management and other functions of the Institute of Geology,CEA
文摘As revealed by field investigations,the co-seismic surface rupture zone of the 2010 MS7.1 Yushu earthquake,Qinghai is a characteristic sinistral strike-slip feature consisting of three distinct sinistral primary ruptures,with an overall strike of 310°-320° and a total length of 31 km.In addition,an approximately 2-km-long en-echelon tensile fissure zone was found east of Longbao Town;if this site is taken as the north end of the rupture zone,then the rupture had a total length of ~51 km.The surface rupture zone is composed of a series of fissures arranged in an en-echelon or alternating relationship between compressive bulges and tensile fissures,with a measured maximum horizontal displacement of 1.8 m.The surface rupture zone extends along the mapped Garzê-Yushu Fault,which implicates it as the seismogenic fault for this earthquake.Historically,a few earthquakes with a magnitude of about 7 have occurred along the fault,and additionally traces of paleoearthquakes are evident that characterize the short-period recurrence interval of large earthquakes here.Similar to the seismogenic process of the 2008 Wenchuan earthquake,the Yushu earthquake is also due to the stress accumulation and release on the block boundaries resulting from the eastward expansion of Qinghai-Tibet Plateau.However,in contrast with the Wenchuan earthquake,the Yushu earthquake had a sinistral strike-slip mechanism resulting from the uneven eastward extrusion of the Baryan Har and Sichuan-Yunnan fault blocks.
基金supported by the China Earthquake Administration Research Fund(Grant No.DZJ2016-18)the National Natural Science Foundation of China(Grant No.41602222)
文摘The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 〉 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fault and depend on the structure of the upper crust as well as the pre-existing tectonics. Therefore, the most recent co-seismic surface ruptures along the Garzê–Yushu fault zone(Dangjiang segment) reveal the surface deformation of the central Tibetan Plateau. Remote sensing images and field investigations suggest a 85 km long surface rupture zone(striking NW-NWW), less than 50 m wide, defined by discontinuous fault scarps, right-stepping en echelon tensional cracks and left-stepping mole tracks that point to a left-lateral strike-slip fault. The gullies that cross fault scarps record systematic left-lateral offsets of 1.8 m to 5.0 m owing to the most recent earthquake, with moment magnitude of about M 7.5, in the Dangjiang segment. Geological and geomorphological features suggest that the spatial distribution of the 1738 co-seismic surface rupture zone was controlled by the pre-existing active Garzê–Yushu fault zone(Dangjiang segment). We confirm that the Garzê–Yushu fault zone, a boundary between the Bayan Har Block to the north and the Qiangtang Block to the south, accommodates the eastward extrusion of the Tibetan Plateau and generates strong earthquakes that release the strain energy owing to the relative motion between the Bayan Har and Qiangtang Blocks.