YAG:Ce3+ phosphor was prepared by a novel co-precipitation-rheological phase method.The resulting YAG:Ce3+ phosphor was characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and photolumine...YAG:Ce3+ phosphor was prepared by a novel co-precipitation-rheological phase method.The resulting YAG:Ce3+ phosphor was characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and photoluminescent emission spectra.By using acetic acid as solvent,YAG:Ce3+ powder with small particle size(≤2 μm) was obtained at a relatively lower sintering temperature of 1400 oC.With the content of acetic acid increasing,small particles dissolved and disappeared,but larger particles grew up and changed its shape from spherical to partially rectangular.Meanwhile,the emission intensity of the sample prepared by co-precipitation-rheological phase method was about 43% higher than that of the sample prepared by co-precipitation method.It was assumed that the significant improvement of luminescence was mainly because the rheological phase presented a better diffusion environment,and therefore,a better homogeneity of activators of Ce3+.展开更多
Abstract: Monophasic Ce3+ and Pr3+ co-doped yttrium aluminum garnet (YAG:Ce3+,pr3+) nanoparticles with good dispersity and uniform grain sizes in the range of 50-80 nm were prepared by a two-step route, which ...Abstract: Monophasic Ce3+ and Pr3+ co-doped yttrium aluminum garnet (YAG:Ce3+,pr3+) nanoparticles with good dispersity and uniform grain sizes in the range of 50-80 nm were prepared by a two-step route, which consisted of a modified co-precipitation preparation of mixed metal hydroxide hydrate intermediates at low temperature of about 40℃ and a subsequent calcination conversion of the synthesized intermediates to crystalline nanoparticle products at about 1000℃. The influences of both the lanthanide ion (Ce3+ and Pr3+) doping concentration and different doping (Ce3+/pr3+) ratio on the photoluminescence intensity were systematically investigated. The synthesized (Ce0.6Pr0.4)0.04Y2.96Al5O12 nanoparticles were near spherical nanoclusters with good dispersity and uniform sizes in the range of 50-80 nm for about 85% of the particles. The strongest photoluminescence intensity was observed for the (Ce0.6Pr0.4)0.04Y2.96Al5O12 nanoparticle products.展开更多
YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate,yttrium nitrate,cerous nitrate as the starting materials and ammonium carbonate as pr...YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate,yttrium nitrate,cerous nitrate as the starting materials and ammonium carbonate as precipitant.The products were characterized by X-ray powder diffraction,luminescence spectrometer,transmission electron microscope(TEM).The XRD results showed that the obtained YAG:Ce3+ fluorescence powders had the crystalline structures of YAG at calcinations temperature of 900 oC and the TEM results showed that the grain diameters were about 100 nm.The YAG:Ce3+ fluorescence powders,synthesized by co-precipitation method,had the best luminescence property when the Ce doping amount was x=0.06 in the molecular formula of Y3-xCexAl5O12,the calcinations time was 2 h and the calcinations temperature was 1000 °C.展开更多
In order to confirm the relationship between the luminescence and the ratio of Ce3+/Ce4+ more clearly, a series of YAG:Ce3+ (Yttrium Aluminum Garnet, Y2.94Al5O12:0.06Ce3+) phosphors were pre- pared under different sin...In order to confirm the relationship between the luminescence and the ratio of Ce3+/Ce4+ more clearly, a series of YAG:Ce3+ (Yttrium Aluminum Garnet, Y2.94Al5O12:0.06Ce3+) phosphors were pre- pared under different sintering atmosphere. A semi-quantitative analysis based on X-ray photoe-lectron spectroscopy (XPS) was introduced to study the mole ratio of Ce3+/Ce4+ in the as-synthesized YAG:Ce3+ phosphors. The results indicated that the percentage of Ce3+/(Ce3+ + Ce4+) reached 88.46% under the reduction atmosphere. The emission intensity of YAG:Ce3+ phosphors was in-creased significantly with the increasing of Ce3+ concentration.展开更多
基金Project supported by the Natural Science Foundation of Jiangxi Province (2009GQC0042)Foundation of Jiangxi Educational Committee(GJJ10153)+1 种基金Major Science and Technology Project of Jiangxi Province (2010AZD00100)Foundation of Jiangxi University of Science and Technology (Jxxjzd10007)
文摘YAG:Ce3+ phosphor was prepared by a novel co-precipitation-rheological phase method.The resulting YAG:Ce3+ phosphor was characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and photoluminescent emission spectra.By using acetic acid as solvent,YAG:Ce3+ powder with small particle size(≤2 μm) was obtained at a relatively lower sintering temperature of 1400 oC.With the content of acetic acid increasing,small particles dissolved and disappeared,but larger particles grew up and changed its shape from spherical to partially rectangular.Meanwhile,the emission intensity of the sample prepared by co-precipitation-rheological phase method was about 43% higher than that of the sample prepared by co-precipitation method.It was assumed that the significant improvement of luminescence was mainly because the rheological phase presented a better diffusion environment,and therefore,a better homogeneity of activators of Ce3+.
基金Project supported by the National High Technology Research and Development Program of China(863 Program)(2013AA031901)the National Natural Science Foundation of China(51425202)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20160093)Topnotch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)
文摘Abstract: Monophasic Ce3+ and Pr3+ co-doped yttrium aluminum garnet (YAG:Ce3+,pr3+) nanoparticles with good dispersity and uniform grain sizes in the range of 50-80 nm were prepared by a two-step route, which consisted of a modified co-precipitation preparation of mixed metal hydroxide hydrate intermediates at low temperature of about 40℃ and a subsequent calcination conversion of the synthesized intermediates to crystalline nanoparticle products at about 1000℃. The influences of both the lanthanide ion (Ce3+ and Pr3+) doping concentration and different doping (Ce3+/pr3+) ratio on the photoluminescence intensity were systematically investigated. The synthesized (Ce0.6Pr0.4)0.04Y2.96Al5O12 nanoparticles were near spherical nanoclusters with good dispersity and uniform sizes in the range of 50-80 nm for about 85% of the particles. The strongest photoluminescence intensity was observed for the (Ce0.6Pr0.4)0.04Y2.96Al5O12 nanoparticle products.
基金Project supported by China Postdoctoral Science Foundation (20100471663)Science and Technology Program of Yantai Citiy (2008151)+1 种基金Natural Science Foundation of Shandong Province (ZR2009BL013)Innovation Group Foundation Plan of Ludong University
文摘YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate,yttrium nitrate,cerous nitrate as the starting materials and ammonium carbonate as precipitant.The products were characterized by X-ray powder diffraction,luminescence spectrometer,transmission electron microscope(TEM).The XRD results showed that the obtained YAG:Ce3+ fluorescence powders had the crystalline structures of YAG at calcinations temperature of 900 oC and the TEM results showed that the grain diameters were about 100 nm.The YAG:Ce3+ fluorescence powders,synthesized by co-precipitation method,had the best luminescence property when the Ce doping amount was x=0.06 in the molecular formula of Y3-xCexAl5O12,the calcinations time was 2 h and the calcinations temperature was 1000 °C.
文摘In order to confirm the relationship between the luminescence and the ratio of Ce3+/Ce4+ more clearly, a series of YAG:Ce3+ (Yttrium Aluminum Garnet, Y2.94Al5O12:0.06Ce3+) phosphors were pre- pared under different sintering atmosphere. A semi-quantitative analysis based on X-ray photoe-lectron spectroscopy (XPS) was introduced to study the mole ratio of Ce3+/Ce4+ in the as-synthesized YAG:Ce3+ phosphors. The results indicated that the percentage of Ce3+/(Ce3+ + Ce4+) reached 88.46% under the reduction atmosphere. The emission intensity of YAG:Ce3+ phosphors was in-creased significantly with the increasing of Ce3+ concentration.