Santanghu Coalfield is the largest integrated coalfield exploration area in China. The major coal seams developing in Xishanyao Formation (Middle Jurassic) are the high-quality steam coals characterized by large thick...Santanghu Coalfield is the largest integrated coalfield exploration area in China. The major coal seams developing in Xishanyao Formation (Middle Jurassic) are the high-quality steam coals characterized by large thickness, favorable horizontal continuity and high coal quality. In this paper, twenty-two samples were collected from the three typical boreholes in Hanshuiquan disirict, representing the 11 coal seam sequences (7#,8#,9#,13#, 14#,15#,17#,18#,19#,20#,22#), respectively. The petrographic characteristics of the coal-bearing sequence in Xishanyao Formation were firstly summarized systematicly, and then the coal-forming swamp characteristics and succession mechanism of the coal seam in Xishanyao Formation were defined by analyzing the samples. The maceral composition, structure, geochemical and geophysical characteristics of coal are in eluded in original genetic criteria of coal-forming swamp an alysis. And the composition of coal petrography, maceral and microlithotype are the most frequently used parameters. Coal is composed of microscopic constituents and inorganic substances. The Xishanyao Formation maceral mainly consists of vitrinite (65.74%-97.01 %), inert i nite (1.93%-34%), and the exinite shows the mode of regular change. The coal-forming swamp in Xishanyao Formation possesses the characteristics of mainly marsh, wet forest swamp facies, and shallow water covered forest swamp facies, and a few of coal seams distribute in the deep water covered forest swamp facies. In addition, the sporopollens in Xishanyao Formation are mainly Pinaceae evergreen broad leaf and needle-leaved plants. Osmundaceae, Cyatheaceae and Lygodiaceae, indicating that the warm and humid tropic-subtropical climate conductive to the persistent growth of coal-forming plants in the Middle Jurassic. The coal-forming swamp shows the characteristics of vertically upward fluctuation through the periodic transition. It indicates a shallow-deep-shallow change process of the water covered depth in the swamp. This is the prin ci pal facto展开更多
The Middle Jurassic Xishanyao Formation in the central section of the southern Junggar Basin has substantial amounts of low-ranked coalbed methane(CBM)recourses and is typically characterized by multi superimposed coa...The Middle Jurassic Xishanyao Formation in the central section of the southern Junggar Basin has substantial amounts of low-ranked coalbed methane(CBM)recourses and is typically characterized by multi superimposed coal seams.To establish the CBM enrichment model,a series of experimental and testing methods were adopted,including coal maceral observation,proximate analysis,low temperature nitrogen adsorption(LTNA),methane carbon isotope determination,porosity/permeability simulation caused by overburden,and gas content testing.The controlling effect of sedimentary environment,geological tectonic,and hydrogeological condition on gas content was analyzed in detail.The results demonstrate that the areas with higher gas content(an average of 8.57 m3/t)are mainly located in the Urumqi River-Santun River(eastern study area),whereas gas content(an average of 3.92 m3/t)in the Manasi River-Taxi River(western study area)is relatively low.Because of the combined effects of strata temperature and pressure,the gas content in coal seam first increases and then decreases with increasing buried depth,and the critical depth of the inflection point ranges from 600 m to 850 m.Affected by the changes in topography and water head height,the direction of groundwater migration is predicted from south to north and from west to east.Based on the gas content variation,the lower and middle parts of the Xishanyao Formation can be divided into three independent coalbearing gas systems.Within a single gas-bearing system,there is a positive correlation between gas content and strata pressure,and the key mudstone layers separating each gas-bearing system are usually developed at the end of each highstand system tract.The new CBM accumulation model of the multi-coals mixed genetic gas shows that both biological and thermal origins are found in a buried depth interval between 600 m and 850 m,suggesting that the coals with those depths are the CBM enrichment horizons and favorable exploration regions in the middle section of the southern Junggar Ba展开更多
There are abundant coal and coalbed methane(CBM)resources in the Xishanyao Formation in the western region of the southern Junggar Basin,and the prospects for CBM exploration and development are promising.To promote t...There are abundant coal and coalbed methane(CBM)resources in the Xishanyao Formation in the western region of the southern Junggar Basin,and the prospects for CBM exploration and development are promising.To promote the exploration and development of the CBM resources of the Xishanyao Formation in this area,we studied previous coalfield survey data and CBM geological exploration data.Then,we analyzed the relationships between the gas content and methane concentration vs.coal seam thickness,burial depth,coal reservoir physical characteristics,hydrogeological conditions,and roof and floor lithology.In addition,we briefly discuss the main factors influencing CBM accumulation.First,we found that the coal strata of the Xishanyao Formation in the study area are relatively simple in structure,and the coal seam has a large thickness and burial depth,as well as moderately good roof and floor conditions.The hydrogeological conditions and coal reservoir physical characteristics are also conducive to the enrichment and a high yield of CBM.We believe that the preservation of CBM resources in the study area is mainly controlled by the structure,burial depth,and hydrogeological conditions.Furthermore,on the basis of the above results,the coal seam of the Xishanyao Formation in the synclinal shaft and buried at depths of 700-1000 m should be the first considered for development.展开更多
基金National Natural Science Foundation Project (Grant No. 41662010)Xinjiang Uygur Autonomous Region University Scientific Research Program For Young Teachers Research And Cultivation Fund Project (Grant No. XJEDU20I6S038).
文摘Santanghu Coalfield is the largest integrated coalfield exploration area in China. The major coal seams developing in Xishanyao Formation (Middle Jurassic) are the high-quality steam coals characterized by large thickness, favorable horizontal continuity and high coal quality. In this paper, twenty-two samples were collected from the three typical boreholes in Hanshuiquan disirict, representing the 11 coal seam sequences (7#,8#,9#,13#, 14#,15#,17#,18#,19#,20#,22#), respectively. The petrographic characteristics of the coal-bearing sequence in Xishanyao Formation were firstly summarized systematicly, and then the coal-forming swamp characteristics and succession mechanism of the coal seam in Xishanyao Formation were defined by analyzing the samples. The maceral composition, structure, geochemical and geophysical characteristics of coal are in eluded in original genetic criteria of coal-forming swamp an alysis. And the composition of coal petrography, maceral and microlithotype are the most frequently used parameters. Coal is composed of microscopic constituents and inorganic substances. The Xishanyao Formation maceral mainly consists of vitrinite (65.74%-97.01 %), inert i nite (1.93%-34%), and the exinite shows the mode of regular change. The coal-forming swamp in Xishanyao Formation possesses the characteristics of mainly marsh, wet forest swamp facies, and shallow water covered forest swamp facies, and a few of coal seams distribute in the deep water covered forest swamp facies. In addition, the sporopollens in Xishanyao Formation are mainly Pinaceae evergreen broad leaf and needle-leaved plants. Osmundaceae, Cyatheaceae and Lygodiaceae, indicating that the warm and humid tropic-subtropical climate conductive to the persistent growth of coal-forming plants in the Middle Jurassic. The coal-forming swamp shows the characteristics of vertically upward fluctuation through the periodic transition. It indicates a shallow-deep-shallow change process of the water covered depth in the swamp. This is the prin ci pal facto
基金supported by the China Geological Survey Project(DD20160204-3)the Discipline Innovation Team of Liaoning Technical University(LNTU20TD-05,LNTU20TD-14,LNTU20TD-30)+1 种基金the Guiding Program of Liaoning Natural Science Founds(2019-ZD-0046)the Scientific Research Funding Project of Liaoning Education Department(LJ2019JL004).
文摘The Middle Jurassic Xishanyao Formation in the central section of the southern Junggar Basin has substantial amounts of low-ranked coalbed methane(CBM)recourses and is typically characterized by multi superimposed coal seams.To establish the CBM enrichment model,a series of experimental and testing methods were adopted,including coal maceral observation,proximate analysis,low temperature nitrogen adsorption(LTNA),methane carbon isotope determination,porosity/permeability simulation caused by overburden,and gas content testing.The controlling effect of sedimentary environment,geological tectonic,and hydrogeological condition on gas content was analyzed in detail.The results demonstrate that the areas with higher gas content(an average of 8.57 m3/t)are mainly located in the Urumqi River-Santun River(eastern study area),whereas gas content(an average of 3.92 m3/t)in the Manasi River-Taxi River(western study area)is relatively low.Because of the combined effects of strata temperature and pressure,the gas content in coal seam first increases and then decreases with increasing buried depth,and the critical depth of the inflection point ranges from 600 m to 850 m.Affected by the changes in topography and water head height,the direction of groundwater migration is predicted from south to north and from west to east.Based on the gas content variation,the lower and middle parts of the Xishanyao Formation can be divided into three independent coalbearing gas systems.Within a single gas-bearing system,there is a positive correlation between gas content and strata pressure,and the key mudstone layers separating each gas-bearing system are usually developed at the end of each highstand system tract.The new CBM accumulation model of the multi-coals mixed genetic gas shows that both biological and thermal origins are found in a buried depth interval between 600 m and 850 m,suggesting that the coals with those depths are the CBM enrichment horizons and favorable exploration regions in the middle section of the southern Junggar Ba
基金the China Geological Survey Project of Chinese Oil and Gas Strategic Petroleum Prospects Investigation and Evaluation(Grant No.1211302108025—2 and No.DD20160204).
文摘There are abundant coal and coalbed methane(CBM)resources in the Xishanyao Formation in the western region of the southern Junggar Basin,and the prospects for CBM exploration and development are promising.To promote the exploration and development of the CBM resources of the Xishanyao Formation in this area,we studied previous coalfield survey data and CBM geological exploration data.Then,we analyzed the relationships between the gas content and methane concentration vs.coal seam thickness,burial depth,coal reservoir physical characteristics,hydrogeological conditions,and roof and floor lithology.In addition,we briefly discuss the main factors influencing CBM accumulation.First,we found that the coal strata of the Xishanyao Formation in the study area are relatively simple in structure,and the coal seam has a large thickness and burial depth,as well as moderately good roof and floor conditions.The hydrogeological conditions and coal reservoir physical characteristics are also conducive to the enrichment and a high yield of CBM.We believe that the preservation of CBM resources in the study area is mainly controlled by the structure,burial depth,and hydrogeological conditions.Furthermore,on the basis of the above results,the coal seam of the Xishanyao Formation in the synclinal shaft and buried at depths of 700-1000 m should be the first considered for development.