The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no consider...The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113 amino acid protein that shares 50% identity with the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike XalO, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23 but differs in promoter region by lacking the TALE binding element (EBE) for AvrXa23. XA23 can trigger a strong hypersensitive response in rice, tobacco, and tomato. Our results provide the first evidence that plant genomes have an executor R gene family of which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in the pathogen.展开更多
The rice XA21 immune receptor kinase and the structurally related XA3 receptor confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. Here we report the isolation of OsSER...The rice XA21 immune receptor kinase and the structurally related XA3 receptor confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. Here we report the isolation of OsSERK2 (rice somatic embryogenesis receptor kinase 2) and demonstrate that OsSERK2 positively regulates immunity mediated by XA21 and XA3 as well as the rice immune receptor FLS2 (OsFLS2). Rice plants silenced for OsSerk2 display altered morphology and reduced sensitivity to the hormone brassinolide. OsSERK2 interacts with the intracellular domains of each immune receptor in the yeast two-hybrid system in a kinase activity-dependent manner. OsSERK2 undergoes bidi- rectional transphosphorylation with XA21 in vitro and forms a constitutive complex with XA21 in vivo. These results demonstrate an essential role for OsSERK2 in the function of three rice immune receptors and suggest that direct interaction with the rice immune receptors is critical for their function. Taken together, our findings suggest that the mechanism of OsSERK2-meditated regulation of rice XA21, XA3, and FLS2 differs from that of AtSERK3/BAK1-mediated regulation of Arabidopsis FLS2 and EFR.展开更多
Rice diseases caused by fungi, bacteria and viruses are one of the major constraints for sustainable rice (Oryza sativa L.) production worldwide. The use of resistant cultivars is considered the most economical and ...Rice diseases caused by fungi, bacteria and viruses are one of the major constraints for sustainable rice (Oryza sativa L.) production worldwide. The use of resistant cultivars is considered the most economical and effective method to control rice diseases. In the last decade, a dozen resistance genes against the fungal pathogen Magnaporthe grisea and the bacterial pathogen Xanthomonas oryzae pv. oryzae have been cloned. Approximately half of them encode nuclear binding site (NBS) and leucine rich repeat (LRR)-containing proteins, the most common type of cloned plant resistance genes. Interestingly, four of them encode novel proteins which have not been identified in other plant species, suggesting that unique mechanisms might be involved in rice defense responses. This review summarizes the recent advances in cloning and characterization of disease resistance genes in rice and presents future perspectives for in-depth molecular analysis of the function and evolution of rice resistance genes and their interaction with avirulence genes in pathogens.展开更多
文摘The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113 amino acid protein that shares 50% identity with the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike XalO, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23 but differs in promoter region by lacking the TALE binding element (EBE) for AvrXa23. XA23 can trigger a strong hypersensitive response in rice, tobacco, and tomato. Our results provide the first evidence that plant genomes have an executor R gene family of which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in the pathogen.
文摘The rice XA21 immune receptor kinase and the structurally related XA3 receptor confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. Here we report the isolation of OsSERK2 (rice somatic embryogenesis receptor kinase 2) and demonstrate that OsSERK2 positively regulates immunity mediated by XA21 and XA3 as well as the rice immune receptor FLS2 (OsFLS2). Rice plants silenced for OsSerk2 display altered morphology and reduced sensitivity to the hormone brassinolide. OsSERK2 interacts with the intracellular domains of each immune receptor in the yeast two-hybrid system in a kinase activity-dependent manner. OsSERK2 undergoes bidi- rectional transphosphorylation with XA21 in vitro and forms a constitutive complex with XA21 in vivo. These results demonstrate an essential role for OsSERK2 in the function of three rice immune receptors and suggest that direct interaction with the rice immune receptors is critical for their function. Taken together, our findings suggest that the mechanism of OsSERK2-meditated regulation of rice XA21, XA3, and FLS2 differs from that of AtSERK3/BAK1-mediated regulation of Arabidopsis FLS2 and EFR.
基金Supported by the National Natural Science Foundation of China (30470990 and 30571063), the High-Tech Research and Development (863) Program of China (2005AA241010), the National "948" Project from the Ministry of Agriculture and the Fu-Rong Scholar Program. Publication of this paper is supported by the National Natural Science Foundation of China (30624808) and Science Publication Foundation of the Chinese Academy of Sciences.
文摘Rice diseases caused by fungi, bacteria and viruses are one of the major constraints for sustainable rice (Oryza sativa L.) production worldwide. The use of resistant cultivars is considered the most economical and effective method to control rice diseases. In the last decade, a dozen resistance genes against the fungal pathogen Magnaporthe grisea and the bacterial pathogen Xanthomonas oryzae pv. oryzae have been cloned. Approximately half of them encode nuclear binding site (NBS) and leucine rich repeat (LRR)-containing proteins, the most common type of cloned plant resistance genes. Interestingly, four of them encode novel proteins which have not been identified in other plant species, suggesting that unique mechanisms might be involved in rice defense responses. This review summarizes the recent advances in cloning and characterization of disease resistance genes in rice and presents future perspectives for in-depth molecular analysis of the function and evolution of rice resistance genes and their interaction with avirulence genes in pathogens.