Parallel Kinematic Machines(PKMs)are being widely used for precise applications to achieve complex motions and variable poses for the end effector tool.PKMs are found in medical,assembly and manufacturing industries w...Parallel Kinematic Machines(PKMs)are being widely used for precise applications to achieve complex motions and variable poses for the end effector tool.PKMs are found in medical,assembly and manufacturing industries where accuracy is necessary.It is often desired to have a compact and simple architecture for the robotic mechanism.In this paper,the kinematic and dynamic analysis of a novel 3-PRUS(P:prismatic joint,R:revolute joint,U:universal joint,S:spherical joint)parallel manipulator with a mobile platform having 6 Degree of Freedom(Do F)is explained.The kinematic equations for the proposed spatial parallel mechanism are formulated using the Modified Denavit-Hartenberg(DH)technique considering both active and passive joints.The kinematic equations are used to derive the Jacobian matrix of the mechanism to identify the singular points within the workspace.A Jacobian based sti ness analysis is done to understand the variations in sti ness for different poses of the mobile platform and further,it is used to decide trajectories for the end effector within the singularity free region.The analytical model of the robot dynamics is presented using the Euler-Lagrangian approach with Lagrangian multipliers to include the system constraints.The gravity and inertial forces of all links are considered in the mathematical model.The analytical results of the dynamic model are compared with ADAMS simulation results for a pre-defined trajectory of the end effector.展开更多
This paper presents a kinematic analysis of the locomotion of a gecko,and experimental verification of the kinematic model.Kinematic analysis is important for parameter design,dynamic analysis,and optimization in biom...This paper presents a kinematic analysis of the locomotion of a gecko,and experimental verification of the kinematic model.Kinematic analysis is important for parameter design,dynamic analysis,and optimization in biomimetic robot research. The proposed kinematic analysis can simulate,without iteration,the locomotion of gecko satisfying the constraint conditions that maintain the position of the contacted feet on the surface.So the method has an advantage for analyzing the climbing motion of the quadruped mechanism in a real time application.The kinematic model of a gecko consists of four legs based on 7-degrees of freedom spherical-revolute-spherical joints and two revolute joints in the waist.The motion of the kinematic model is simulated based on measurement data of each joint.The motion of the kinematic model simulates the investigated real gecko's motion by using the experimental results.The analysis solves the forward kinematics by considering the model as a combination of closed and open serial mechanisms under the condition that maintains the contact positions of the attached feet on the ground. The motions of each joint are validated by comparing with the experimental results.In addition to the measured gait,three other gaits are simulated based on the kinematic model.The maximum strides of each gait are calculated by workspace analysis.The result can be used in biomimetic robot design and motion planning.展开更多
文摘Parallel Kinematic Machines(PKMs)are being widely used for precise applications to achieve complex motions and variable poses for the end effector tool.PKMs are found in medical,assembly and manufacturing industries where accuracy is necessary.It is often desired to have a compact and simple architecture for the robotic mechanism.In this paper,the kinematic and dynamic analysis of a novel 3-PRUS(P:prismatic joint,R:revolute joint,U:universal joint,S:spherical joint)parallel manipulator with a mobile platform having 6 Degree of Freedom(Do F)is explained.The kinematic equations for the proposed spatial parallel mechanism are formulated using the Modified Denavit-Hartenberg(DH)technique considering both active and passive joints.The kinematic equations are used to derive the Jacobian matrix of the mechanism to identify the singular points within the workspace.A Jacobian based sti ness analysis is done to understand the variations in sti ness for different poses of the mobile platform and further,it is used to decide trajectories for the end effector within the singularity free region.The analytical model of the robot dynamics is presented using the Euler-Lagrangian approach with Lagrangian multipliers to include the system constraints.The gravity and inertial forces of all links are considered in the mathematical model.The analytical results of the dynamic model are compared with ADAMS simulation results for a pre-defined trajectory of the end effector.
基金supported by the Brain Korea 21 Project and SNU-IAMD.
文摘This paper presents a kinematic analysis of the locomotion of a gecko,and experimental verification of the kinematic model.Kinematic analysis is important for parameter design,dynamic analysis,and optimization in biomimetic robot research. The proposed kinematic analysis can simulate,without iteration,the locomotion of gecko satisfying the constraint conditions that maintain the position of the contacted feet on the surface.So the method has an advantage for analyzing the climbing motion of the quadruped mechanism in a real time application.The kinematic model of a gecko consists of four legs based on 7-degrees of freedom spherical-revolute-spherical joints and two revolute joints in the waist.The motion of the kinematic model is simulated based on measurement data of each joint.The motion of the kinematic model simulates the investigated real gecko's motion by using the experimental results.The analysis solves the forward kinematics by considering the model as a combination of closed and open serial mechanisms under the condition that maintains the contact positions of the attached feet on the ground. The motions of each joint are validated by comparing with the experimental results.In addition to the measured gait,three other gaits are simulated based on the kinematic model.The maximum strides of each gait are calculated by workspace analysis.The result can be used in biomimetic robot design and motion planning.