为了对饮食文本信息高效分类,建立一种基于word2vec和长短期记忆网络(Long-short term memory,LSTM)的分类模型。针对食物百科和饮食健康文本特点,首先利用word2vec实现包含语义信息的词向量表示,并解决了传统方法导致数据表示稀疏及维...为了对饮食文本信息高效分类,建立一种基于word2vec和长短期记忆网络(Long-short term memory,LSTM)的分类模型。针对食物百科和饮食健康文本特点,首先利用word2vec实现包含语义信息的词向量表示,并解决了传统方法导致数据表示稀疏及维度灾难问题,基于K-means++根据语义关系聚类以提高训练数据质量。由word2vec构建文本向量作为LSTM的初始输入,训练LSTM分类模型,自动提取特征,进行饮食宜、忌的文本分类。实验采用48 000个文档进行测试,结果显示,分类准确率为98.08%,高于利用tf-idf、bag-of-words等文本数值化表示方法以及基于支持向量机(Support vector machine,SVM)和卷积神经网络(Convolutional neural network,CNN)分类算法结果。实验结果表明,利用该方法能够高质量地对饮食文本自动分类,帮助人们有效地利用健康饮食信息。展开更多
针对受字数限定影响的文本特征表达能力弱成为短文本分类中制约效果的主要问题,提出基于word2vec维基百科词模型的中文短文本分类方法(chinese short text classification method based on embedding trained by word2vec from wikipedi...针对受字数限定影响的文本特征表达能力弱成为短文本分类中制约效果的主要问题,提出基于word2vec维基百科词模型的中文短文本分类方法(chinese short text classification method based on embedding trained by word2vec from wikipedia, CSTC-EWW),并针对新浪爱问4个主题的短文本集进行相关试验。首先训练维基百科语料库并获取word2vec词模型,然后建立基于此模型的短文本特征,通过SVM、贝叶斯等经典分类器对短文本进行分类。试验结果表明:本研究提出的方法可以有效进行短文本分类,最好情况下的F-度量值可达到81.8%;和词袋(bag-of-words, BOW)模型结合词频-逆文件频率(term frequency-inverse document frequency, TF-IDF)加权表达特征的短文本分类方法以及同样引入外来维基百科语料扩充特征的短文本分类方法相比,本研究分类效果更好,最好情况下的F-度量提高45.2%。展开更多
文摘针对受字数限定影响的文本特征表达能力弱成为短文本分类中制约效果的主要问题,提出基于word2vec维基百科词模型的中文短文本分类方法(chinese short text classification method based on embedding trained by word2vec from wikipedia, CSTC-EWW),并针对新浪爱问4个主题的短文本集进行相关试验。首先训练维基百科语料库并获取word2vec词模型,然后建立基于此模型的短文本特征,通过SVM、贝叶斯等经典分类器对短文本进行分类。试验结果表明:本研究提出的方法可以有效进行短文本分类,最好情况下的F-度量值可达到81.8%;和词袋(bag-of-words, BOW)模型结合词频-逆文件频率(term frequency-inverse document frequency, TF-IDF)加权表达特征的短文本分类方法以及同样引入外来维基百科语料扩充特征的短文本分类方法相比,本研究分类效果更好,最好情况下的F-度量提高45.2%。