We used principa/component analysis (PCA) and compressed sensing to detect wood defects from wood plate images. PCA makes it possible to reduce data redundancy and feature dimensions and compressed sensing, used as ...We used principa/component analysis (PCA) and compressed sensing to detect wood defects from wood plate images. PCA makes it possible to reduce data redundancy and feature dimensions and compressed sensing, used as a elas- sifter, improves identification accuracy. We extracted 25 features, including geometry and regional features, gray-scale texture features, and invariant moment features, from wood board images and then integrated them using PCA, and se- lected eight principal components to express defects. After the fusion process, we used the features to construct a data dic- tionary, and realized the classification of defects by computing the optimal solution of the data dictionary in l1 norm using the least square method. We tested 50 Xylosma samples of live knots, dead knots, and cracks. The average detection time with PCA feature fusion and without were 0.2015 and 0.7125 ms, respectively. The original detection accuracy by SOM neural network was 87 %, but after compressed sensing, it was 92 %.展开更多
We proposed a detection method for wood defects based on linear discriminant analysis (LDA) and the use of compressed sensor images. Wood surface images were captured, using a camera Oscar F810C IRF camera, and then t...We proposed a detection method for wood defects based on linear discriminant analysis (LDA) and the use of compressed sensor images. Wood surface images were captured, using a camera Oscar F810C IRF camera, and then the image segmentation was performed, and the defect features were extracted from wood board images. To reduce the processing time, LDA algorithm was used to integrate these features and reduce their dimensions. Features after fusion were used to construct a data dictionary and a compressed sensor was designed to recognize the wood defects types. Of the three major defect types, 50 images live knots, dead knots, and cracks were used to test the effects of this method. The average time for feature fusion and classification was 0.446 ms with the classification accuracy of 94%.展开更多
基金financially supported by the Fund of Forestry 948 Project(2011-4-04)the Fundamental Research Funds for the Central Universities(DL13CB02,DL13BB21)the Natural Science Foundation of Heilongjiang Province(C201415)
文摘We used principa/component analysis (PCA) and compressed sensing to detect wood defects from wood plate images. PCA makes it possible to reduce data redundancy and feature dimensions and compressed sensing, used as a elas- sifter, improves identification accuracy. We extracted 25 features, including geometry and regional features, gray-scale texture features, and invariant moment features, from wood board images and then integrated them using PCA, and se- lected eight principal components to express defects. After the fusion process, we used the features to construct a data dic- tionary, and realized the classification of defects by computing the optimal solution of the data dictionary in l1 norm using the least square method. We tested 50 Xylosma samples of live knots, dead knots, and cracks. The average detection time with PCA feature fusion and without were 0.2015 and 0.7125 ms, respectively. The original detection accuracy by SOM neural network was 87 %, but after compressed sensing, it was 92 %.
基金supported by the State Forestry Administration‘‘948’’projects(2015-4-52)Fundamental Research Funds for the Central Universities(2572016BB05)+1 种基金Natural Science Foundation of Heilongjiang Province(C2015054)Heilongjiang Postdoctoral Research Fund(LBH-Q14014)
文摘We proposed a detection method for wood defects based on linear discriminant analysis (LDA) and the use of compressed sensor images. Wood surface images were captured, using a camera Oscar F810C IRF camera, and then the image segmentation was performed, and the defect features were extracted from wood board images. To reduce the processing time, LDA algorithm was used to integrate these features and reduce their dimensions. Features after fusion were used to construct a data dictionary and a compressed sensor was designed to recognize the wood defects types. Of the three major defect types, 50 images live knots, dead knots, and cracks were used to test the effects of this method. The average time for feature fusion and classification was 0.446 ms with the classification accuracy of 94%.