目的像对稠密匹配是3维重建和SLAM(simultaneous localization and mapping)等高级图像处理的基础,而摄影基线过宽、重复纹理、非刚性形变和时空效率低下等问题是影响这类方法实用性的主要因素,为了更好地解决这类问题,本文提出一种面...目的像对稠密匹配是3维重建和SLAM(simultaneous localization and mapping)等高级图像处理的基础,而摄影基线过宽、重复纹理、非刚性形变和时空效率低下等问题是影响这类方法实用性的主要因素,为了更好地解决这类问题,本文提出一种面向重复纹理及非刚性形变的高效稠密匹配方法。方法首先,采用Deep Matching算法获得降采样后像对的匹配点集,并采用随机抽样一致算法剔除其中外点。其次,利用上一步得到的匹配结果估计相机位姿及缩放比例,以确定每个点对稠密化过程中的邻域,再对相应点对的邻域提取HOG描述符并进行卷积操作得到分数矩阵。最后,根据归一化后分数矩阵的数值以及下标距离的方差确定新的匹配点对以实现稠密化。结果在多个公共数据集上采用相同大小且宽高比为4∶3的像对进行实验,实验结果表明,本文方法具备一定的抗旋转、尺度变化与形变的能力,能够较好地完成宽基线条件下具有重复纹理及非刚性形变像对的匹配。与DeepMatching算法进行对比实验,本文方法在查准率、空间效率和时间效率上分别提高了近10%、25%和30%。结论本文提出的稠密匹配方法具有较高的查准率和时空效率,其结果可以运用于3维重建和超分辨率重建等高级图像处理技术中。展开更多
The baseline roll and length errors for wide-swath altimeters are major error sources in sea surface measurements that exhibit strong spatial characteristics in the cross-track direction.These errors can be identified...The baseline roll and length errors for wide-swath altimeters are major error sources in sea surface measurements that exhibit strong spatial characteristics in the cross-track direction.These errors can be identified and estimated in accordance with height differences at crossover points generated with nadir altimeters after excluding the interference from other error sources.Most of the wide-swath altimeter baseline estimation methods considered only the roll error in previous studies.A numerical simulation was conducted in this study using nadir altimeters to estimate the roll and length errors simultaneously to provide a selectable scheme for baseline error estimation and correction for future wide-swath altimeters.Results based on the parameters of the surface water and ocean topography mission and Sentinel-3A show that the correlation coefficient of the roll error between the estimated and simulated values is 0.89,while the correlation coefficient of the length error is 0.85.The sea surface height root mean square error(RMSE)can be reduced from 12.18 cm to 6.45 cm based on the two estimated results.The estimation effect can be increased by using multiple nadir altimeters to form an observation constellation.The numerical simulation of the five nadir altimeter constellation shows that the correlation coefficients of the roll and length errors would increase to 0.97,which reduces the sea surface height RMSE to 2.88 cm.In addition,the stability of this method is indicated in simulation experiments,which introduce different degrees of sea state errors.展开更多
To solve the problem of wide-baseline stereo image matching based on multiple cameras,the paper puts forward an image matching method of combining maximally stable extremal regions (MSER) with Scale Invariant Feature ...To solve the problem of wide-baseline stereo image matching based on multiple cameras,the paper puts forward an image matching method of combining maximally stable extremal regions (MSER) with Scale Invariant Feature Transform (SIFT) . It uses MSER to detect feature regions instead of difference of Gaussian. After fitted into elliptical regions,those regions will be normalized into unity circles and represented with SIFT descriptors. The method estimates fundamental matrix and removes outliers by auto-maximum a posteriori sample consensus after initial matching feature points. The experimental results indicate that the method is robust to viewpoint changes,can reduce computational complexity effectively and improve matching accuracy.展开更多
Matching features such as curve segments in stereo images play a very important role in scene recomtruction. In this paper, a stereo matching algorithm for the trajectories composed of time stamped points is proposed....Matching features such as curve segments in stereo images play a very important role in scene recomtruction. In this paper, a stereo matching algorithm for the trajectories composed of time stamped points is proposed. Based on time stamped points, planar curve match measurements are given first, such as time constraint, cross-ratio invariant constraint and eplpolar geometry constraint; then, a trajectory matching method is proposed based on epipolar geometry constraint and cross-ratio invariant constraint. In order to match the planar curve segments projected by perspective projection system, the curve start time and end time are selected first to prepare match candidates. Then, the epipolar equation is used to discard the unmatched curve segment candidates. At last, a cross ratio invariant constxaint is used to find the most matched curve segments. If their match measurement is higher than the specialized threshold, a candidate with the least cross ratio difference is then selected as the match result; otherwise, no match is found. Unlike the conventional planar curve segments matching algorithm, this paper presents a weakly calibrated binocular stereo vision system which is based on wide baseline. The stamped points are obtained by targets detecting method of flying objects from image sequences. Due to wide baseline, there must exist the projection not in epipolar monotonic order or the curve segments located in very short distance and keeping the epipolar monotonic order. By using the method mentioned above, experiments are made to match planar curve segments not only in epipolar monotonic order but also not in epipolar monotonic order. The results show that the performance of our curve matching algorithm is effective for matching the arc-like planar trajectories composed of time stamped points.展开更多
Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition const...Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition constraints brought by on-site conditions.Previous studies have indicated that the data-acquisition pattern can have more influence on the registration results than other factors.In practice,the ideal short-baseline observations,i.e.,the dense collection mode,is rarely feasible,considering the low accessibility in forest environments and the commonly limited labor and time resources.The wide-baseline observations that cover a forest site using a few folds less observations than short-baseline observations,are therefore more preferable and commonly applied.Nevertheless,the wide-baseline approach is more challenging for data registration since it typically lacks the required sufficient overlaps between datasets.Until now,a robust automated registration solution that is independent of special hardware requirements has still been missing.That is,the registration accuracy is still far from the required level,and the information extractable from the merged point cloud using automated registration could not match that from the merged point cloud using manual registration.This paper proposes a discrete overlap search(DOS)method to find correspondences in the point clouds to solve the low-overlap problem in the wide-baseline point clouds.The proposed automatic method uses potential correspondences from both original data and selected feature points to reconstruct rough observation geometries without external knowledge and to retrieve precise registration parameters at data-level.An extensive experiment was carried out with 24 forest datasets of different conditions categorized in three difficulty levels.The performance of the proposed method was evaluated using various accuracy criteria,as well as based on data acquired from different hardware,platforms,viewing perspectives,and at different points of time.The prop展开更多
文摘目的像对稠密匹配是3维重建和SLAM(simultaneous localization and mapping)等高级图像处理的基础,而摄影基线过宽、重复纹理、非刚性形变和时空效率低下等问题是影响这类方法实用性的主要因素,为了更好地解决这类问题,本文提出一种面向重复纹理及非刚性形变的高效稠密匹配方法。方法首先,采用Deep Matching算法获得降采样后像对的匹配点集,并采用随机抽样一致算法剔除其中外点。其次,利用上一步得到的匹配结果估计相机位姿及缩放比例,以确定每个点对稠密化过程中的邻域,再对相应点对的邻域提取HOG描述符并进行卷积操作得到分数矩阵。最后,根据归一化后分数矩阵的数值以及下标距离的方差确定新的匹配点对以实现稠密化。结果在多个公共数据集上采用相同大小且宽高比为4∶3的像对进行实验,实验结果表明,本文方法具备一定的抗旋转、尺度变化与形变的能力,能够较好地完成宽基线条件下具有重复纹理及非刚性形变像对的匹配。与DeepMatching算法进行对比实验,本文方法在查准率、空间效率和时间效率上分别提高了近10%、25%和30%。结论本文提出的稠密匹配方法具有较高的查准率和时空效率,其结果可以运用于3维重建和超分辨率重建等高级图像处理技术中。
基金the Shandong Provincial Natural Science Foundation(No.ZR2020MD097)the National Key Research and Development Program of China(No.2016YFC1401004)the National Natural Science Foundation of China(No.62031005)。
文摘The baseline roll and length errors for wide-swath altimeters are major error sources in sea surface measurements that exhibit strong spatial characteristics in the cross-track direction.These errors can be identified and estimated in accordance with height differences at crossover points generated with nadir altimeters after excluding the interference from other error sources.Most of the wide-swath altimeter baseline estimation methods considered only the roll error in previous studies.A numerical simulation was conducted in this study using nadir altimeters to estimate the roll and length errors simultaneously to provide a selectable scheme for baseline error estimation and correction for future wide-swath altimeters.Results based on the parameters of the surface water and ocean topography mission and Sentinel-3A show that the correlation coefficient of the roll error between the estimated and simulated values is 0.89,while the correlation coefficient of the length error is 0.85.The sea surface height root mean square error(RMSE)can be reduced from 12.18 cm to 6.45 cm based on the two estimated results.The estimation effect can be increased by using multiple nadir altimeters to form an observation constellation.The numerical simulation of the five nadir altimeter constellation shows that the correlation coefficients of the roll and length errors would increase to 0.97,which reduces the sea surface height RMSE to 2.88 cm.In addition,the stability of this method is indicated in simulation experiments,which introduce different degrees of sea state errors.
基金Sponsored by the Scientific Research Common Program of Beijing Municipal Commission of Education(Grant No. KM201010772021the National High Technology Research and Development Program of China (863 Program) (Grant No. 2006AA74105)the National Natural Science Foundation of Chi-na(Grant No. 60803103)
文摘To solve the problem of wide-baseline stereo image matching based on multiple cameras,the paper puts forward an image matching method of combining maximally stable extremal regions (MSER) with Scale Invariant Feature Transform (SIFT) . It uses MSER to detect feature regions instead of difference of Gaussian. After fitted into elliptical regions,those regions will be normalized into unity circles and represented with SIFT descriptors. The method estimates fundamental matrix and removes outliers by auto-maximum a posteriori sample consensus after initial matching feature points. The experimental results indicate that the method is robust to viewpoint changes,can reduce computational complexity effectively and improve matching accuracy.
基金The National Natural Science Founda-tion of China (No.60135020) and the National Defence Key Pre-research Project of China (No.413010701-3)
文摘Matching features such as curve segments in stereo images play a very important role in scene recomtruction. In this paper, a stereo matching algorithm for the trajectories composed of time stamped points is proposed. Based on time stamped points, planar curve match measurements are given first, such as time constraint, cross-ratio invariant constraint and eplpolar geometry constraint; then, a trajectory matching method is proposed based on epipolar geometry constraint and cross-ratio invariant constraint. In order to match the planar curve segments projected by perspective projection system, the curve start time and end time are selected first to prepare match candidates. Then, the epipolar equation is used to discard the unmatched curve segment candidates. At last, a cross ratio invariant constxaint is used to find the most matched curve segments. If their match measurement is higher than the specialized threshold, a candidate with the least cross ratio difference is then selected as the match result; otherwise, no match is found. Unlike the conventional planar curve segments matching algorithm, this paper presents a weakly calibrated binocular stereo vision system which is based on wide baseline. The stamped points are obtained by targets detecting method of flying objects from image sequences. Due to wide baseline, there must exist the projection not in epipolar monotonic order or the curve segments located in very short distance and keeping the epipolar monotonic order. By using the method mentioned above, experiments are made to match planar curve segments not only in epipolar monotonic order but also not in epipolar monotonic order. The results show that the performance of our curve matching algorithm is effective for matching the arc-like planar trajectories composed of time stamped points.
基金financial support from the National Natural Science Foundation of China(Grant Nos.32171789,32211530031)Wuhan University(No.WHUZZJJ202220)Academy of Finland(Nos.334060,334829,331708,344755,337656,334830,293389/314312,334830,319011)。
文摘Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition constraints brought by on-site conditions.Previous studies have indicated that the data-acquisition pattern can have more influence on the registration results than other factors.In practice,the ideal short-baseline observations,i.e.,the dense collection mode,is rarely feasible,considering the low accessibility in forest environments and the commonly limited labor and time resources.The wide-baseline observations that cover a forest site using a few folds less observations than short-baseline observations,are therefore more preferable and commonly applied.Nevertheless,the wide-baseline approach is more challenging for data registration since it typically lacks the required sufficient overlaps between datasets.Until now,a robust automated registration solution that is independent of special hardware requirements has still been missing.That is,the registration accuracy is still far from the required level,and the information extractable from the merged point cloud using automated registration could not match that from the merged point cloud using manual registration.This paper proposes a discrete overlap search(DOS)method to find correspondences in the point clouds to solve the low-overlap problem in the wide-baseline point clouds.The proposed automatic method uses potential correspondences from both original data and selected feature points to reconstruct rough observation geometries without external knowledge and to retrieve precise registration parameters at data-level.An extensive experiment was carried out with 24 forest datasets of different conditions categorized in three difficulty levels.The performance of the proposed method was evaluated using various accuracy criteria,as well as based on data acquired from different hardware,platforms,viewing perspectives,and at different points of time.The prop