A new wide-range fast readout system capable of adaptive identification is designed for wire scanners,which are used to measure beam profiles and emittance.This system is capable of handling varying current signals wi...A new wide-range fast readout system capable of adaptive identification is designed for wire scanners,which are used to measure beam profiles and emittance.This system is capable of handling varying current signals with Gaussian distributions and current pulses up to 1000 counts/s, as well as an input current range of 1 n A–1 m A. When tested, the resolution was found to exceed 3.68% for full scale, the nonlinearity was found to be less than 0.11%, and the measurement sensibility was found to be less than 5 p A. We believe that the system will play a crucial role in improving the measurement accuracy of beam diagnosis and the efficiency of accelerator operation,as well as decreasing the time required for beam tuning.This system was applied to the beam diagnosis of an injector II prototype for an accelerator-driven subcritical system and produced excellent measurement results. A description of the adaptive fast readout system for wire scanners is presented in this paper.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11475233,11705257,and 11775285)
文摘A new wide-range fast readout system capable of adaptive identification is designed for wire scanners,which are used to measure beam profiles and emittance.This system is capable of handling varying current signals with Gaussian distributions and current pulses up to 1000 counts/s, as well as an input current range of 1 n A–1 m A. When tested, the resolution was found to exceed 3.68% for full scale, the nonlinearity was found to be less than 0.11%, and the measurement sensibility was found to be less than 5 p A. We believe that the system will play a crucial role in improving the measurement accuracy of beam diagnosis and the efficiency of accelerator operation,as well as decreasing the time required for beam tuning.This system was applied to the beam diagnosis of an injector II prototype for an accelerator-driven subcritical system and produced excellent measurement results. A description of the adaptive fast readout system for wire scanners is presented in this paper.