In this paper,many observations show that the thermal states including the SST,the convective activities in the west- ern Pacific warm pool largely influence the interannual and intraseasonal variations of summer circ...In this paper,many observations show that the thermal states including the SST,the convective activities in the west- ern Pacific warm pool largely influence the interannual and intraseasonal variations of summer circulation and the cli- mate anomalies in East Asia.Moreover,it is pointed out that there is a teleconnection pattern of summer circulation anomalies in the Northern Hemisphere,the so-called East Asia/Pacific pattern. The cause of the teleconnection pattern is studied by using the theory of quasi-stationary planetary wave propaga- tion,and it may be due to the propagation of quasi-stationary planetary waves forced by heat source around the Philippines.Moreover,this pattern is well simulated by using a quasi-geostrophic,linear,spherical model and the IAP-GCM,respectively.展开更多
The relationship between the interannual variation in tropical cyclone (TC) activity over the western North Pacific (WNP) and the thermal state over the warm pool (WP) is examined in this paper. The results show...The relationship between the interannual variation in tropical cyclone (TC) activity over the western North Pacific (WNP) and the thermal state over the warm pool (WP) is examined in this paper. The results show that the subsurface temperature in the WP is well correlated with TC geographical distribution and track type. Their relation is linked by the East Asian monsoon trough. During the warm years, the westward-retreating monsoon trough creates convergence and vorticity fields that are favorable for tropical cyclogenesis in the northwest of the WNP, whereas more TCs concentrating in the southeast result from eastward penetration of the monsoon trough during the cold years. The steering flows at 500 hPa lead to a westward displacement track in the warm years and recurving prevailing track in the cold years. The two types of distinct processes in the monsoon environment triggering tropical cyclogenesis are hypothesized by composites centered for TC genesis location corresponding to two kinds of thermal states of the WP. During the warm years, low-frequency intraseasonal oscillation is active in the west of the WNP such that eastward-propagating westerlies cluster TC genesis in that region. In contrast, during the cold years, the increased cyclogenesis in the southeast of the WNP is mainly associated with tropical depression type disturbances transiting from equatorially trapped mixed Rossby gravity waves. Both of the processes may be fundamental mechanisms for the inherent interannual variation in TC activity over the WNP.展开更多
Physical processes associated with onset of the 1998 Asian summer monsoon were examined in detail using multi-source datasets. We demonstrated that strong ocean-atmosphere-land interaction in the northern Indian Ocean...Physical processes associated with onset of the 1998 Asian summer monsoon were examined in detail using multi-source datasets. We demonstrated that strong ocean-atmosphere-land interaction in the northern Indian Ocean and tropical Asian area during spring is a fundamental factor that induces the genesis and development of a monsoon onset vortex over the Bay of Bengal (BOB), with the vortex in turn triggering onset of the Asian summer monsoon. In spring, strong surface sensible heat- ing over India and the Indochina Peninsula is transferred to the atmosphere, forming prominent in situ cyclonic circulation, with anticyclonic circulations over the Arabian Sea and northern BOB where the ocean receives abundant solar radiation. The corresponding surface winds along the North Indian Ocean coastal areas cause the ocean to produce the in situ offshore cur- rents and upwelling, resulting in sea surface temperature (SST) cooling. With precipitation on the Indochina Peninsula in- creasing from late April to early May, the offshore current disappears in the eastern BOB or develops into an onshore current, leading to SST increasing. A southwest-northeast oriented spring BOB warm pool with SST 〉31℃forms in a band from the southeastern Arabian Sea to the eastern BOB. In early May, the Somali cross-equatorial flow forms due to the meridional SST gradient between the two hemispheres, and surface sensible heat over the African land surface. The Somali flow overlaps in phase with the anticyclone over the northern Arabian Sea in the course of its inertial fluctuation along the equator. The con- vergent cold northerlies on the eastern side of the anticyclone cause the westerly in the inertial trough to increase rapidly, so that enhanced sensible heat is released from the sea surface into the atmosphere. The cyclonic vorticity forced by such sensible heating is superimposed on the inertial trough, leading to its further increase in vorticity strength. Since atmospheric inertial motion is destroyed, the flow deviates from t展开更多
采用1958~2002年海洋同化资料SODA(Simple Ocean Data Assimilation)的海温场,定义了东印度洋。西太平洋永久性暖池(简称印.太暖池)指数,即不随季节变化的27.5℃等温面所包含的〉27.5℃的暖水体积或强度,并采用功率谱和小波...采用1958~2002年海洋同化资料SODA(Simple Ocean Data Assimilation)的海温场,定义了东印度洋。西太平洋永久性暖池(简称印.太暖池)指数,即不随季节变化的27.5℃等温面所包含的〉27.5℃的暖水体积或强度,并采用功率谱和小波分析的方法研究了其周期变化特征。结果表明,印度洋暖池和西太平洋暖池均具有显著的准10a的周期振荡和1976~1986年前后的年代际突变特征,暖池由1976年前的“冷”暖池转变为1986年后的“热”暖池;暖池指数的季节循环也存在显著的年代际突变特征,特别是西太平洋暖池在异常暖年代其季节变化还呈现出明显的增暖趋势;暖池三维结构的年代际变化主要表现为在暖年代热带南印度洋暖水的向西向南扩张和西太平洋暖池东边界的向东及北边界的向北扩张,暖异常主要分布在60m以浅的上混合层中暖池的东边界区域,而其下面的温跃层内则为更强的异常降温,垂向上表现出上暖下冷的斜压模态结构,而温跃层和混合层深度的变化在不同暖池区则有不同的特点,表明东印度洋暖池和西太平洋暖池的年代际变化可能由不同的机制引起,尚需进一步分析其海洋动力学和热力学过程。展开更多
A serics of low-latitude marginal seas, ranging from the southern South China Sea in the north to the Arafura Sea in the south, are located within the Western Pacific Warm Pool. As shown by rnicropaleontological, isot...A serics of low-latitude marginal seas, ranging from the southern South China Sea in the north to the Arafura Sea in the south, are located within the Western Pacific Warm Pool. As shown by rnicropaleontological, isotopical and organic geochemical analyses, the sea surface temperatures in the marginal seas at the last glacial maximum were much cooler than those in the open Western Pacific Ocean. The emergence of extensive shelves of the marginal seas at the glacial low sea-level stand and the decrease of surface temperatures in their deeper water parts resulted in a remarkable reduction of the ability of vapor and heat transport to the atmosphere, causing variabilities to the Warm Pool in the glacial cycles. The intensification of winter monsoon at the glacial stages not only led to a decrease of the surface water temperature and hence to an enhanced seasonality, but also carried moisture from the sea to the tropical islands, giving rise to the downward shift of snowline and mountainous vegetation zones there. It may offer a new alternative in solution of the “Tropical Ocean Paleo-temperature Enigma”.展开更多
文摘In this paper,many observations show that the thermal states including the SST,the convective activities in the west- ern Pacific warm pool largely influence the interannual and intraseasonal variations of summer circulation and the cli- mate anomalies in East Asia.Moreover,it is pointed out that there is a teleconnection pattern of summer circulation anomalies in the Northern Hemisphere,the so-called East Asia/Pacific pattern. The cause of the teleconnection pattern is studied by using the theory of quasi-stationary planetary wave propaga- tion,and it may be due to the propagation of quasi-stationary planetary waves forced by heat source around the Philippines.Moreover,this pattern is well simulated by using a quasi-geostrophic,linear,spherical model and the IAP-GCM,respectively.
基金This study is supported by the National Natural Science Foundation of China (Grant No. 40730952) Project KZCX2-YW-220, Program of Knowledge Innovation for the 3rd Period, Chinese Academy of Sciencesthe Project G2006CB403600, the "National Key Program for Developing Basic Sciences", respectively.
文摘The relationship between the interannual variation in tropical cyclone (TC) activity over the western North Pacific (WNP) and the thermal state over the warm pool (WP) is examined in this paper. The results show that the subsurface temperature in the WP is well correlated with TC geographical distribution and track type. Their relation is linked by the East Asian monsoon trough. During the warm years, the westward-retreating monsoon trough creates convergence and vorticity fields that are favorable for tropical cyclogenesis in the northwest of the WNP, whereas more TCs concentrating in the southeast result from eastward penetration of the monsoon trough during the cold years. The steering flows at 500 hPa lead to a westward displacement track in the warm years and recurving prevailing track in the cold years. The two types of distinct processes in the monsoon environment triggering tropical cyclogenesis are hypothesized by composites centered for TC genesis location corresponding to two kinds of thermal states of the WP. During the warm years, low-frequency intraseasonal oscillation is active in the west of the WNP such that eastward-propagating westerlies cluster TC genesis in that region. In contrast, during the cold years, the increased cyclogenesis in the southeast of the WNP is mainly associated with tropical depression type disturbances transiting from equatorially trapped mixed Rossby gravity waves. Both of the processes may be fundamental mechanisms for the inherent interannual variation in TC activity over the WNP.
基金supported jointly by National Basic Research Program of China (Grant No. 2006CB403600)the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-01)National Natural Science Foundation of China (Grant Nos. 40875034, 40925015, 40821092, 40975052, and 40810059005)
文摘Physical processes associated with onset of the 1998 Asian summer monsoon were examined in detail using multi-source datasets. We demonstrated that strong ocean-atmosphere-land interaction in the northern Indian Ocean and tropical Asian area during spring is a fundamental factor that induces the genesis and development of a monsoon onset vortex over the Bay of Bengal (BOB), with the vortex in turn triggering onset of the Asian summer monsoon. In spring, strong surface sensible heat- ing over India and the Indochina Peninsula is transferred to the atmosphere, forming prominent in situ cyclonic circulation, with anticyclonic circulations over the Arabian Sea and northern BOB where the ocean receives abundant solar radiation. The corresponding surface winds along the North Indian Ocean coastal areas cause the ocean to produce the in situ offshore cur- rents and upwelling, resulting in sea surface temperature (SST) cooling. With precipitation on the Indochina Peninsula in- creasing from late April to early May, the offshore current disappears in the eastern BOB or develops into an onshore current, leading to SST increasing. A southwest-northeast oriented spring BOB warm pool with SST 〉31℃forms in a band from the southeastern Arabian Sea to the eastern BOB. In early May, the Somali cross-equatorial flow forms due to the meridional SST gradient between the two hemispheres, and surface sensible heat over the African land surface. The Somali flow overlaps in phase with the anticyclone over the northern Arabian Sea in the course of its inertial fluctuation along the equator. The con- vergent cold northerlies on the eastern side of the anticyclone cause the westerly in the inertial trough to increase rapidly, so that enhanced sensible heat is released from the sea surface into the atmosphere. The cyclonic vorticity forced by such sensible heating is superimposed on the inertial trough, leading to its further increase in vorticity strength. Since atmospheric inertial motion is destroyed, the flow deviates from t
文摘采用1958~2002年海洋同化资料SODA(Simple Ocean Data Assimilation)的海温场,定义了东印度洋。西太平洋永久性暖池(简称印.太暖池)指数,即不随季节变化的27.5℃等温面所包含的〉27.5℃的暖水体积或强度,并采用功率谱和小波分析的方法研究了其周期变化特征。结果表明,印度洋暖池和西太平洋暖池均具有显著的准10a的周期振荡和1976~1986年前后的年代际突变特征,暖池由1976年前的“冷”暖池转变为1986年后的“热”暖池;暖池指数的季节循环也存在显著的年代际突变特征,特别是西太平洋暖池在异常暖年代其季节变化还呈现出明显的增暖趋势;暖池三维结构的年代际变化主要表现为在暖年代热带南印度洋暖水的向西向南扩张和西太平洋暖池东边界的向东及北边界的向北扩张,暖异常主要分布在60m以浅的上混合层中暖池的东边界区域,而其下面的温跃层内则为更强的异常降温,垂向上表现出上暖下冷的斜压模态结构,而温跃层和混合层深度的变化在不同暖池区则有不同的特点,表明东印度洋暖池和西太平洋暖池的年代际变化可能由不同的机制引起,尚需进一步分析其海洋动力学和热力学过程。
文摘A serics of low-latitude marginal seas, ranging from the southern South China Sea in the north to the Arafura Sea in the south, are located within the Western Pacific Warm Pool. As shown by rnicropaleontological, isotopical and organic geochemical analyses, the sea surface temperatures in the marginal seas at the last glacial maximum were much cooler than those in the open Western Pacific Ocean. The emergence of extensive shelves of the marginal seas at the glacial low sea-level stand and the decrease of surface temperatures in their deeper water parts resulted in a remarkable reduction of the ability of vapor and heat transport to the atmosphere, causing variabilities to the Warm Pool in the glacial cycles. The intensification of winter monsoon at the glacial stages not only led to a decrease of the surface water temperature and hence to an enhanced seasonality, but also carried moisture from the sea to the tropical islands, giving rise to the downward shift of snowline and mountainous vegetation zones there. It may offer a new alternative in solution of the “Tropical Ocean Paleo-temperature Enigma”.