The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes ...The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress, Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mecha- nisms. However, very li2ttle summarization has been done to review their research progress. Not iust important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senes- cence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses.展开更多
It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription fa...It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all ana-lyzed WRKY proteins recognize the TrGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcrip-tion factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biologi- cal processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.展开更多
Hydrogen sulfide(H2S) is a gasotransmitter playing a vital role in response to biotic and abiotic stress for plants. In order to understand the transcriptional regulation of the genes that are responsible for endogeno...Hydrogen sulfide(H2S) is a gasotransmitter playing a vital role in response to biotic and abiotic stress for plants. In order to understand the transcriptional regulation of the genes that are responsible for endogenous H2 S generation, the promoter sequences of L-cysteine desulfhydrase(LCD), D-cysteine desulfhydrase(DCD1,DCD2), desulfhydrase(DES) and nitrogen fixation synthetase(NFS1, NFS2) were analyzed. They are all found to contain a W-box, a characteristic core binding site for the plant WRKY transcription factors, which have important roles in the plant's responses to numerous stresses by modifying the expression patterns of their target genes. An electrophoretic mobility shift assay indicated that WRKY18 and WRKY60 interacted with the W-box in the promoters of the LCD, DCD1, DCD2, DES and NFS2 genes, whereas WRKY40 bound to the W-box of the NFS1 promoter. The expression levels of the LCD, DES and DCD1 genes were up-regulated, but the DCD2 was downregulated in the plants with WRKY18, WRKY40 or WRKY60 mutations. The plants with double and triple mutations of WRKY18, WRKY40 and WRKY60 had a higher rate of H2 S production during cadmium stress and were more resistant to the cadmium stress than the wild type or single mutants. These results suggest that WRKY transcription factors regulate the H2 S signaling pathway in plants, allowing them to cope with cadmium stress.展开更多
基金supported by the Natural Science Foundation of China(No.31301790)Guangdong Natural Science Foundation (S2013040016220)+1 种基金China Postdoctoral Science Foundation (2013M530375,2014T70827)Shenzhen Vegetable Molecular Biotechnological Engineering Lab Scheme (Development and Reform Commission of Shenzhen Municipal Government)
文摘The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress, Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mecha- nisms. However, very li2ttle summarization has been done to review their research progress. Not iust important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senes- cence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses.
文摘It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all ana-lyzed WRKY proteins recognize the TrGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcrip-tion factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biologi- cal processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.
基金supported by the National Natural Science Foundation of China(31300236,31372085 and31400237)Shanxi Province Science Foundation for Youths(2014021026-1)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2013103)
文摘Hydrogen sulfide(H2S) is a gasotransmitter playing a vital role in response to biotic and abiotic stress for plants. In order to understand the transcriptional regulation of the genes that are responsible for endogenous H2 S generation, the promoter sequences of L-cysteine desulfhydrase(LCD), D-cysteine desulfhydrase(DCD1,DCD2), desulfhydrase(DES) and nitrogen fixation synthetase(NFS1, NFS2) were analyzed. They are all found to contain a W-box, a characteristic core binding site for the plant WRKY transcription factors, which have important roles in the plant's responses to numerous stresses by modifying the expression patterns of their target genes. An electrophoretic mobility shift assay indicated that WRKY18 and WRKY60 interacted with the W-box in the promoters of the LCD, DCD1, DCD2, DES and NFS2 genes, whereas WRKY40 bound to the W-box of the NFS1 promoter. The expression levels of the LCD, DES and DCD1 genes were up-regulated, but the DCD2 was downregulated in the plants with WRKY18, WRKY40 or WRKY60 mutations. The plants with double and triple mutations of WRKY18, WRKY40 and WRKY60 had a higher rate of H2 S production during cadmium stress and were more resistant to the cadmium stress than the wild type or single mutants. These results suggest that WRKY transcription factors regulate the H2 S signaling pathway in plants, allowing them to cope with cadmium stress.